首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为提高网联驾驶车辆在信号交叉口上游路段与驾驶员车辆换道博弈的主动性,以左转网联驾驶车辆为研究对象分析该路段的强制换道博弈特性。首先,通过分析信号交叉口上游路段车辆的行驶意图和换道行为,设定驾驶人期望函数来客观反映车辆的行驶需求,以车辆的安全和行驶效率为收益并进行量化,在完全信息的假设下通过博弈均衡解得到最优换道决策来实现换道收益最大化;其次,为提高换道的舒适性,以五次多项式规划换道轨迹并实现网联驾驶车辆对驾驶员车辆博弈换道的过程;最后,利用仿真试验对模型进行验证,分析不同换道位置和绿灯剩余时间等因素对网联驾驶车辆决策的影响。研究结果表明,在信号交叉口上游非合作博弈强制换道过程中,随单位换道位置增加换道概率平均增加0.69%,随单位绿灯剩余时间增加车辆换道概率平均降低0.82%。通过仿真分析信号交叉口上游路段车辆的博弈换道特性和决策倾向,有利于为网联驾驶车辆换道提供决策引导。  相似文献   

2.
车联网环境中,交通系统将长期呈现智能网联汽车和传统人工驾驶车辆混合共存的状况.针对智能网联交通环境下的新型混合车流,建立了车辆的换道行为决策模型.对于混合车辆交通流引入最小安全区域模型,自主车辆交通流基于博弈论的思想进行建模.自主车辆之间的换道被看作为1种非合作博弈行为,车辆以自身行驶状态为博弈收益,寻求行驶条件更优的车道.运用SUMO软件对提出的换道模型进行仿真验证分析.仿真结果表明,博弈换道模型相比于传统间隙阈值接受模型具有较高的车道利用率和安全稳定性.  相似文献   

3.
道路上行驶的网联异质车流,存在着网联自主驾驶汽车(Connected Autonomous Vehicles, CAVs)和人工驾驶汽车(Human-driven vehicles, HVs)的复杂交互耦合关系。传统的交通优化模型着重于均匀化网联车辆的运行速度,缺乏对网联车辆自主换道和主动礼让行为的考虑。为引导CAV自主变道决策和让行行为,挖掘其自主行为的动力学特性,运用系统动力学建立车车交互行为模型,判断CAVs所处的空间阈值,控制瓶颈区CAVs的目标巡航速度,调节瓶颈区道路车辆密度,提高异质车流通行效率。采用Matlab数值仿真,验证分析面向CAV自主决策行为的动力学模型,结果表明:相较于传统的交通优化模型,加入符合换道条件和让行条件下的CAVs自主行为因素后,交通瓶颈区车辆平均延误以及瓶颈区排队长度均减少约20%,其中停车延误可减少约40%。网联异质车流中车车交互行为特性及自主决策行为动力学模型可为提高异质车流在瓶颈区的高效运行提供理论基础。  相似文献   

4.
针对有人与无人驾驶车辆在交叉口存在冲突时的协调控制问题,引入智能网联车辆的设计思想,将交叉口存在交互行为的决策个体建模为博弈中的参与者,以冲突车辆的速度改变方案为博弈策略,构建双方的收益矩阵,而驾驶收益采用行车安全收益、行车效率收益和行车舒适性收益来计算,求解博弈模型的纳什均衡,作为双方的最优驾驶策略组合,完成交叉口多车冲突的协作优化.模型加入驾驶员类型的多样性模拟,基于Matlab对提出的算法进行验证,结果表明无人驾驶车辆会根据对方驾驶员行为调整自身的行为策略,与基于冲突表的协作算法对比,本算法的冲突消解所用时间更短,在确保安全的同时提高了冲突车辆通过路口的效率.   相似文献   

5.
研究分析道路交通环境下的车辆换道交互行为,客观反映车辆微观行为特性及宏观车流运行规律。通过分析车辆换道微观驾驶行为,构建Logit模型定量分析驾驶人换道行为决策过程,基于“效用理论”思想,实现驾驶人决策效用最大化。选取青岛市杭鞍快速路实际交通流为研究背景,标定模型相关参数;进一步仿真验证了分层Logit模型的准确性。研究成果可为智能网联交通环境下的车车交互、车路协同和自动驾驶系统提供理论支撑和方法依据。  相似文献   

6.
伴随车联网技术的发展,道路交通流呈现智能网联自动驾驶汽车与传统人工驾驶车辆混合共存发展态势,研究网联新型混合车流换道驾驶行为的风险特性极其重要。基于安全裕度理论,建立了换道行为风险量化模型,采用故障树分析法,推导换道的时间和空间风险,进行时空融合的风险评定量化,以判断车辆是否处于安全变道状态,并动态平衡车辆换道行为可能存在的风险。运用SUMO软件对建立的量化模型进行仿真验证分析,1/TTC与瞬时风险系数均值分别下降约0.1与0.05,同时变化趋势趋于稳定。安全裕度风险量化模型使换道风险得到了有效控制的同时,交通流的稳定性得到了较大提高,可保障未来网联环境中自主驾驶车辆队列的稳态运行,从而提高交通容量和交通效率。  相似文献   

7.
研究分析复杂交通场景中车辆换道行为,揭示车辆运行特性及其规律。基于效用理论方法,以实现驾驶行为决策效用最大化为目标,建立车辆换道分层Logit模型。系统分析影响车辆行为变化的因素,建立各层次参数变量相关模型。仿真分析表明:较一般的车辆行为模型,车辆换道分层Logit模型更能准确地描述实际交通场景中车辆换道的行为决策过程,有效提高车辆运行效率。研究结果为智能车路协同与交互行为、车辆可变限速技术、自适应巡航控制技术等提供理论依据和技术支撑。  相似文献   

8.
为研究换道情境下换道车辆与目标车道后方车辆驾驶人间的交互行为,设计了城市快速路换道场景,搭建出双车驾驶模拟实验平台,招募40名驾驶人,开展了8种换道场景下的双车实验并进行驾驶风格问卷调查.基于换道阶段实验数据,分析对比了单、双车实验中两车驾驶人的交互行为特征和差异.利用多元Logistic回归模型,分析不同因素对换道交互决策的影响.结果表明:单、双车实验中,换道车辆和目标车道后方车辆的行为特征具有明显差异,从而验证了开展双车实验的必要性;不同的道路限速、换道方向、驾驶风格等因素下,两车驾驶人关键行为变量呈现差异性;道路限速、车辆初始速度、两车纵向位置差、横/纵速度差、纵向速度乘积等均对两车换道交互决策产生显著影响.  相似文献   

9.
网联自动车被认为可以提升交通效率、保证行车安全并节约能源,但是由于无线通信系统的开放性,网联自动车很容易受到网络攻击的威胁。现有的研究主要集中于网络攻击的种类及过程,并评估该攻击对车辆纵向行为的影响。本文旨在研究网络攻击对车辆横向行为的影响,即对网络攻击下的换道行为进行研究。通过对经典的跟驰模型智能驾驶员模型(Intelligent Driver Model, IDM)和经典的换道模型最小化换道总制动模型(Minimizing Overall Braking Induced by Lane changes, MOBIL)进行改进,提出了一种扩展换道模型(Extended Lane-Changing model, ELC),来对网络攻击影响下的车辆换道行为进行建模分析。最后通过仿真实验,说明了不同的恶意网络攻击对车辆换道行为的影响。结果表明,网络攻击会显著影响车辆的换道决策,并导致异常驾驶行为。  相似文献   

10.
为分析自动驾驶车辆(AV)与人工驾驶车辆(HV)之间存在速度差时对混合驾驶交通流动态特性的影响,选取智能驾驶员模型(IDM)和协同自适应巡航控制(CACC)模型分别对HV和AV跟驰行为进行建模,采用MOBIL换道模型对换道行为进行建模.以单向两车道路段为场景,仿真分析了不同AV渗透率下速度差对混合驾驶环境交通流基本图的...  相似文献   

11.
车辆换道过程对交通安全和交通拥堵有重要影响,为了获得不同驾驶人的换道行为特性,考虑了车辆换道过程中驾驶人的因素,利用SPSS对问卷调查的结果进行主成分分析,采用K-均值聚类方法对驾驶风格进行量化,将驾驶人分为激进型和保守型两种类型,再利用时间对数模型提出了驾驶风格值变量。对两组类型驾驶人进行换道试验,获得了不同风格驾驶人换道时间和换道纵向距离等换道特性的试验数据,并建立了考虑驾驶风格的车辆换道时间预测模型;基于预测的换道时间以及换道车辆转向角与驾驶风格值变量、速度之间的关系,结合车辆运动学模型,建立了车辆换道纵向距离预测模型,并将预测结果与实际换道数据进行了对比分析,结果表明,本研究提出的预测模型准确率较高。研究结果表明,激进型驾驶人在换道过程中其行为较为激进,换道时间较短,换道距离较短;所建立的预测模型可以较准确地预测和解释驾驶人的换道行为。  相似文献   

12.
以换道过程中目标车道跟随车为研究对象,对跟随车与换道车之间的交互行为进行分析,采用模糊推理技术进行建模;选取相对间距、相对速度、最迟换道距离、驾驶员性格等作为模糊推理系统输入变量,换道支持度为输出,构造3类不同换道方式的模糊规则,建立基于模糊推理的车辆换道模型。结果表明:根据模糊推理的特点设计的换道模型能够反映车辆驾驶行为的自主特性;通过改变交通流密度进行数值模拟分析发现,相比于强制换道和对称双车道元胞自动机模型,协作换道模糊推理模型提高了整个路段的交通流平均速度,减少了路段交通拥挤。  相似文献   

13.
针对无人车在现实交通流中的驾驶行为以及车辆间相互影响机制还不明确的现状,提出逼近最优换道策略的无人车驾驶模型.结合无人车周围的交通环境,引入驾驶行为指标体系,利用层次分析法测算指标权值.基于欧氏距离与灰色关联分析的Topsis(Technique for Order Preference by similarity to an Ideal Solution)法建立驾驶行为决策模型来计算换道最优逼近值,代替随机换道策略驾驶模型中的随机概率值;建立逼近最优换道策略的无人车驾驶模型,利用美国洲际5号公路的实际交通数据对新模型进行数值仿真.结果表明:逼近最优换道策略的无人车驾驶模型明显优于随机换道的无人车驾驶模型,能够改善交通拥堵状况,提高整个道路车辆的行驶速度.  相似文献   

14.
针对常规人工驾驶车辆和网联辅助驾驶车辆随机混合的交通流,分析其稳定性与安全性.基于紧跟常规车的网联车退化为常规车的跟驰特性,提出了网联车随机退化为常规车情形的数学期望表达式,进而建立网联车混合交通流稳定性的一般性分析方法.选取全速度差模型和智能驾驶员模型分别作为常规车和网联车跟驰模型,进行混合交通流稳定性案例分析,考虑常规车与网联车相对数量及相对空间位置的随机性,设计上匝道瓶颈交通安全影响的数值仿真实验.研究结果表明,网联车有助于提升交通流稳定性与安全性,平衡态速度越接近9.8~10.6 m/s速度范围,混合交通流满足稳定状态所需的网联车市场率临界值越大;当网联车市场率大于0.37时,混合交通流可在任意平衡态速度下稳定;相比于常规车交通流,网联车交通流的交通安全水平可提高54.29%~71.36%.  相似文献   

15.
对元胞自动机引入Gipps跟驰模型,并结合改进的Q强化学习方法分别建立普通车辆及智能网联车的微观行驶策略,提出了一种新型的混合交通流演化仿真方法.然后,利用数值模拟方式对双车道交通环境进行仿真,探索智能网联车对混合交通流的动态影响.结果表明,相比于元胞自动机构建的普通车辆智能体,改进的Q强化学习方法训练的智能网联车智能体具备更强的连续时空环境适应能力,双车道环境下道路通行能力随着智能网联车渗透率的提升而增大,最高可提升45.34%.此外,智能网联车渗透率的提高会降低车群低效的换道行为,拓宽高通行能力水平下的车辆密度范围,有利于改善交通拥堵.  相似文献   

16.
现有智能车决策方法未考虑路权信息、车辆礼貌驾驶以及车辆有限感知范围等因素,容易导致汇流时的安全隐患.针对该类问题,提出一种基于主从博弈的智能车辆决策方法.该方法通过构建结合路权的博弈模型,对汇流场景进行参数化建模,再引入合作因子等目标项设计相应的收益函数,最终设计汇流场景中的车辆决策求解框架,以达到该场景下决策收益的最大值.实验结果表明,所提方法能够提高在数据集上的车辆决策行为预测准确率,并能提高车辆在高车流密度环境中的决策稳健性.  相似文献   

17.
弯道换道决策及运动规划算法主要影响自动驾驶汽车的安全性和操纵稳定性。针对高速公路弯道换道场景决策的安全性和行驶效率不够高的问题,提出新的基于主车相对前车的驾驶不满意度的决策算法。为了提高运动规划算法实时性,采用路径-速度解耦框架进行主车换道轨迹规划。对于路径规划,选择五次多项式曲线,采用考虑安全、舒适和高效性的4个换道路径评价指标,实现最优路径规划。对于速度规划,结合动态规划与二次规划优化获取平滑速度规划曲线。仿真结果表明基于驾驶不满意度的换道决策模型能选择更高效和安全的行驶方式。在典型的主车换道场景,主车最大质心侧偏角,最大横摆角速度的数值均小,表明换道轨迹规划算法能确保主车换道的安全性和操纵稳定性。  相似文献   

18.
车辆换道行为是微观交通流中的典型驾驶行为之一。研究车辆换道决策模型,可以帮助无人驾驶车辆正确进行换道决策。以NGSIM数据集为依据,采用SG滤波器对NGSIM数据集进行平滑处理,筛选平滑处理后的数据得到训练集和测试集;选择影响车辆换道决策的7个因素作为模型输入,建立基于粒子群优化算法的支持向量机(PSO-SVM)车辆换道决策模型和标准支持向量机(标准SVM)车辆换道决策模型;对训练集和测试集进行归一化处理,利用归一化处理的数据进行模型的训练和测试。测试集数据分类验证结果表明,建立的PSO-SVM车辆换道决策模型的决策准确率为94.67%,相比于标准SVM车辆换道决策模型提高6%,能有效实现无人驾驶车辆的换道决策。  相似文献   

19.
车道变换决策阶段,由于驾驶人对距离和速度判断失误,极易造成擦挂和追尾事故.为了明确车道变换决策形成机制以及此过程中交通冲突的诱发机制,基于决策阶段车辆间的运动关系及驾驶期望等,限定边界条件,提出车道变换博弈的概念.引入具有混合策略的二人有限零和灰色博弈模型,推导模型算法.结合实际道路试验前提下车道变换博弈样本的筛选和数据处理分析,研究博弈双方驾驶人的策略选择和收益特性.结果表明,当车道变换对象车与目标车道后随车的交通冲突不可避免时,对象车的理想最优策略是减速等待,而目标车道后随车的理想最优策略是加速通过临界冲突点,可以有效地兼顾博弈双方安全性与行车时间的收益需求,达到整体最优.研究结果可为车道变换过程中交通冲突的形成机制和路权分配提供相应的理论支持.  相似文献   

20.
针对车流优化速度模型在侧向偏移方面的尚存缺陷,提出了考虑侧向车影响及侧向偏移的优化速度模型。综合考虑了车辆侧向偏移的影响因素,基于刺激-反应机制和车辆跟驰理论,系统分析车速优化模型,协同考虑换道车辆侧向偏移的影响因素,建立车辆行为特性的优化速度模型,并在典型的减速换道场景中进行仿真分析。结果表明,考虑侧向偏移的优化速度模型能够更加贴合实际交通状况,切实体现车辆驾驶行为特性规律,研究成果为车辆平稳运行和安全换道提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号