首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
在p型硅衬底上,制备了金属有机金属(metal-organic-metal,MOM)电激发表面等离激元器件。器件结构是p-Si/Au/V2O5/NPB/Alq3:DCM/Sm/Au,掺杂DCM的Alq3为发光层。高倍显微镜下,器件侧面发光图像显示,绝大部分光被限制在双金层结构波导中传播。采用微区共焦拉曼光谱仪,分别测量了侧面出射的非偏振模式、TM模式和TE模式电致发光谱。TM模式强度约为TE模式强度的2倍。分析认为,具有TM偏振特性的表面等离激元(surface plasmon polariton,SPP)在侧面电致发光中起重要作用。发光体的能量耗散谱表明SPP模式能量约占总能量65%。利用时域有限差分法(finite-different time-domain,FDTD)对简化结构进行模拟,得到了泄漏模和SPP模式的二维电场强度分布。  相似文献   

2.
在p型硅衬底上, 制备了金属-有机-金属(metal-organic-metal, MOM)电激发表面等离激元器件。器件结构是p-Si/Au/V2O5/NPB/Alq3:DCM/Sm/Au, 掺杂DCM的Alq3为发光层。高倍显微镜下, 器件侧面发光图像显示, 绝大部分光被限制在双金层结构波导中传播。采用微区共焦拉曼光谱仪, 分别测量了侧面出射的非偏振模式、TM模式和TE模式电致发光谱。TM模式强度约为TE模式强度的2倍。分析认为, 具有TM偏振特性的表面等离激元(surface plasmon polariton, SPP)在侧面电致发光中起重要作用。 发光体的能量耗散谱表明SPP模式能量约占总能量65%。利用时域有限差分法(finite-different time-domain, FDTD)对简化结构进行模拟, 得到了泄漏模和SPP模式的二维电场强度分布。  相似文献   

3.
表面等离激元研究是纳米光学研究的重要组成部分。北京大学物理学院朱星教授课题组在对聚焦表面等离激元(SPP)  相似文献   

4.
金属中大量自由电子可以与电磁波耦合在金属表面形成表面等离激元(Surface Plasmon Polariton, SPP),能够将光辐射能量有效耦合并束缚在金属表面,在近场范围内形成显著的场增强效应.基于金属周期性结构形成的表面等离激元光栅在利用近场场增强效应的同时,可以灵活设计共振波长,因而在高灵敏红外探测器研发中得到广泛应用.采用半导体双量子阱(Quantum Well, QW)结构的电荷敏感型红外光晶体管探测器(Charge Sensitive Infrared Phototransistor, CSIP)是一种新型的高灵敏度红外探测器,它利用光敏浮栅(Photo-Gating)效应实现红外光电转换过程的倍增效应,因而具有波长可调、灵敏度高、光响应率高等优点.本文综述了表面等离激元光栅在CSIP红外探测器件中的设计和应用的研究进展,阐述金属孔阵列光栅的光耦合物理机制和场增强效果、偏振转换效率等特性,通过设计优化的表面等离激元耦合结构,提升CSIP器件光耦合量子效率,然后阐述了CSIP红外光探测器的生长结构、工艺流程,结合荧光谱测试、电流-电压(Current-Voltage, I-V)测试、慢步进扫描光谱测试等技术展示CSIP红外光探测器光电探测性能.最后进一步展望了SPP耦合CSIP高灵敏红外探测器的未来发展和应用研究趋势.  相似文献   

5.
螺旋相位片(Spiral phase plate简称SPP)是产生轨道角动量光束的一种重要光学器件,在光束调控、量子信息等领域有着重要应用.本文提出了一种基于计算机打印灰度掩膜的螺旋相位片的加工方法,详细讨论了SPP设计方法和光刻工艺,并实验制作了拓扑电荷为3的螺旋相位片,利用马赫-策德尔干涉仪实验对SPP产生涡旋光束进行了检测,获得良好的螺旋相位干涉图.本文的研究结果为低成本、高质量、高效率的螺旋相位片加工技术提供了一种有用途径.  相似文献   

6.
由两种以上的电介质材料周期性的填充到亚波长金属狭缝中组成的系统被称为是SPP光子晶体.它可以产生带隙结构从而有效调控狭缝中的表面等离激元.对于这个系统,用等效理论计算出来的带隙宽度总是比数值模拟出来的结果要大些.对于这一误差的来源,一种猜测是,光波因能够通过金属壁直接传播而有渗漏效应.本文通过时域有限差分(FDTD)模...  相似文献   

7.
测量并操控新材料和新器件中极端时空小尺度电子的超快动力学过程,是后摩尔时代柔性半导体和微纳超快响应器件研发的核心.时空和能量分辨的光发射电子显微技术将光学的泵浦-探测方案与电子显微成像技术巧妙结合,兼具飞秒-纳米极端时空和高能量分辨本领,已经成为探索纳米光子学和低维半导体器件等领域超快光物理过程的普适显微手段,推动了等离激元学、半导体材料科学及其相关交叉学科在基础和应用研究领域的革命性发展.本篇综述将重点介绍超快光电子成像技术在等离激元功能器件、高阶等离激元涡旋场、等离激元斯格明子和低维半导体材料方面的应用.最后,我们将展望超快光电子成像技术在未来基础研究和应用研究中的新机遇.  相似文献   

8.
当前的等离激元传感主要基于表面等离极化激元和局域表面等离激元共振两种模式.然而基于表面等离极化激元的传感需要精确的入射角度及多种光学元器件的配合方能使用;而基于局域表面等离激元共振的传感由于共振线宽较宽导致其灵敏度和品质因数(figure of merit,FOM)不够高.设计了一种基于纳米颗粒/间隔层/反射层结构的具...  相似文献   

9.
起源于金属中自由电子集体振荡的表面等离激元,具有超小的光学模式体积和亚波长局域的近场增益,为纳米尺度上研究光和物质相互作用带来新的机遇.共振的纳米金属结构的近场区域,具有各向异性的珀塞尔系数,并且可以为量子体系提供近场激发.我们理论上演示了基于表面等离激元结构的单分子共振荧光、原子布居数的本征量子拍频及其在表面等离激元结构中的纳米尺度上的实现、表面等离激元诱导的各向异性珀塞尔系数导致的亚波长尺度自发辐射谱线的变化.这些结果在超紧凑的有源量子器件中有潜在应用.  相似文献   

10.
表面等离激元可以突破衍射极限,具有强局域性,在传感、起偏、吸收、分束等方面具有广泛的应用前景.目前,太赫兹波段的表面等离激元器件研究大多是在远场光谱方面,其近场特性的研究有待更进一步深入.本文基于石墨烯微米带结构,研究了太赫兹表面等离激元的激发及场分布特性.本文设计了能够通过太赫兹波激发表面等离激元的石墨烯微米带结构,数值计算了其表面等离激元的场分布,并制备了石墨烯微米带器件,利用透射式太赫兹近场显微镜激发并测量了石墨烯微米带的表面等离激元,对共振失谐对等离激元场分布的影响进行了探究.研究结果为石墨烯表面等离激元器件在太赫兹生物传感、安全检测、高数据率通信等方面的应用提供了相关指导.  相似文献   

11.
提出利用非对称双面金属光栅电极提高有机电致发光器件(OLED)的光导出效率,采用时域有限差分(FDTD)电磁场模拟仿真软件详细研究了OLED中表面等离子体激元的激发和耦合传输的物理规律和物理机制,计算和分析了非对称双面光栅电极的周期、槽宽、入射光的入射角等与OLED光导出率之间的关系,通过设计优化非对称金属光栅电极结构...  相似文献   

12.
基于矢量瑞利-索末菲衍射积分,研究了离轴径向偏振高斯光束的非傍轴传输特性,推导了离轴径向偏振高斯光束在自由空间中非傍轴传输的解析表达式,并与傍轴的情况进行了对比.研究表明:f参数、离轴系数和传输距离对径向偏振高斯光束的非傍轴传输特性有着重要的影响,而且,传输距离较远,离轴径向偏振光束的光斑向光轴靠拢,表现出较强的离轴修复能力.这些结论在多束离轴激光束进行光束合成和光束整形的研究中具有重要意义.  相似文献   

13.
微加工技术为构建基于金属纳米结构的表面等离激元光学器件提供了有效手段.然而,由微加工制得的金属纳米结构表面往往粗糙不平,这限制了纳米光学器件的功能和品质.本文基于缓慢氧化腐蚀提出一种可有效平滑金纳米结构粗糙表面的方法.通过对聚焦离子束刻蚀得到的金纳米带(nanobelt)光滑前后的光传播特性进行测量比较,证明了光滑表面有利于表面等离激元的传播.这些结果表明缓慢氧化腐蚀平滑法可用于大幅提高微加工金属纳米结构的表面等离激元光学特性,对于纳米光子器件的制造及优化具有重要意义.  相似文献   

14.
理论研究了在电介质覆盖金属波导体系中,表面缺陷结构导致的表面等离激元模式与波导模式间的相互耦合机制。在电介质层表面引入一维凹槽结构,利用凹槽结构对入射光波的散射,可以实现表面等离激元模式与波导模式间的相互转换。模式转换效应会导致在结构透射谱上出现新的能带。通过广义Fresnel公式解释了该附加能带的形成机制。利用该模式转换特性,可以实现表面等离激元模式和波导模式的方向性激发。这些结果在二维光子学器件,如布拉格反射镜、分束器和光互连中有着潜在的应用。  相似文献   

15.
根据超导二流体模型,研究了在THz波段超导材料铌表面存在的表面等离激元的色散曲线和特征长度随外磁场的变化关系,分析了外磁场对表面等离激元激发条件的影响.结果表明:外磁场强度增大时,色散曲线偏离光锥线程度将增大,表面等离激元传播距离、归一化波长及其在介质内的穿透深度将变小,而在超导材料内的穿透深度将增大,且色散曲线和特征长度随磁场的变化程度还与频率有关.同时,共振角度对外磁场变化不敏感,但共振频率将随外磁场强度增大而红移.该结果可为超导波导器件设计提供一定的参考.  相似文献   

16.
现代信息技术对芯片的集成度与功能多样性提出了越来越高的要求,使得微带线、共面波导为代表的传统片上传输线在电磁模式与功能方面的短板日渐凸显。因此,从物理底层寻找具有全新传输模式的传输线是突破当前芯片瓶颈的一条重要技术路径。人工表面等离激元传输线作为一种具有强场束缚性和灵活可调色散特性等优势的电磁超材料,有望成为下一代芯片技术中的关键基础元件。文中介绍了人工表面等离激元片上传输线的基本构型、小型化设计以及可重构设计,展现了人工表面等离激元片上传输线具有的极高自由度。然后介绍了基于人工表面等离激元片上传输线的片上去耦应用和信号调制应用研究进展,展示了人工表面等离激元片上传输线巨大的应用潜力。  相似文献   

17.
表面等离激元可以有效地调控自发辐射体的内量子效率和外量子效率,为发展高效新能源提供了可行的方案。特别是近年来,国内外研究人员将该技术应用到固体发光器件中,取得了许多有价值的研究成果。基于这些研究成果,文章介绍了表面等离激元调控固体发光器件自发辐射的原理和实验进展。  相似文献   

18.
随着第六代通信技术(6G)、空间态势感知等系统对高通量、高带宽要求的进一步提高,太赫兹技术成为国际学术界和工业界的研究热点。2022年,太赫兹人工表面等离激元研究在国际上受到很大的关注,盘点了该领域的关键热点与新进展,包括基于太赫兹人工表面等离激元的无源器件、有源器件、传感器、通信系统以及生物医药应用等。人工表面等离激元对传输的电磁波具有亚波长的电场束缚能力和非线性色散特性,为太赫兹功能器件和系统应用的实现带来了新机遇。  相似文献   

19.
本文提出了一种用两层金属之间的梯形空气通道作为集成光学的基本结构单元。时域有限差分法(FDTD)的模拟结果表明亚波长梯形通道等离子体激元(CPPs)波导可以有效地控制表面等离子体激元的散射损耗,提高输出端的波印廷矢量,从而实现低传输损耗和能量聚焦。本文用金属银作为波导材料,设计了一种二维梯形通道等离子体激元波导基本结构单元,利用时域有限差分法(FDTD)对其输入端口耦合效率以及梯形波导的传输效率进行模拟分析。验证了梯形通道表面等离子体激元(CPPs)波导较之矩形(CPPs)波导的优越性。  相似文献   

20.
从理论上研究了圆柱形金纳米线中, 可见光波长下(λ= 632. 8 nm) 表面等离激元模式的传输性质。通过求解麦克斯韦方程组, 得到圆柱形金纳米线中表面等离激元波导的传播常数, 进而得到表面等离激元模式的传输性质, 包括其传播长度及有效半径等。还发现了表面等离激元模式的传输性质受到模式结构以及介质介电常数的影响, 并且得到了表面等离激元传输距离和能量局域之间的普遍矛盾, 即能量局域越好传播距离越短。通过计算, 能够在特定的结构参数下获得较好的局域特性和传播长度, 例如, 当金属芯半径为 40 nm, 介质( SiO2 ) 厚度为 40 nm时, HE11 模式的传播长度为 103. 6 μm, 有效半径 642nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号