首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
研究了复矩阵的次正定性的性质和一系列充分必要条件,得到了“n阶次正定复矩阵的次特征值实部为正”与“当JA为复正规矩阵时,A是次正定复矩阵的充分必要条件是A的次特征值实部为正”等结论;讨论并给出了矩阵乘积是次正定复矩阵的充分和充要条件;得到了与著名的Ostrowski-Taussky不等式、Hadamard不等式、Oppenhein不等式等相应的重要结果.  相似文献   

2.
正定复矩阵的几个性质   总被引:1,自引:0,他引:1  
本文讨论R A Horn和C R Johnson所定义的正定复矩阵的性质,以及它与Hermite正定矩阵的关系.  相似文献   

3.
给出了复矩阵的次正定性概念,并得出它的一些性质。  相似文献   

4.
复亚正定矩阵是正定Hermite矩阵的推广。给出判别复亚正定矩阵的一系列等价条件,并得到这一类矩阵行列式的不等式。  相似文献   

5.
给出了复矩阵次正定性的概念,得到了次正定复矩阵的一些结论,并讨论了它们间的Kronecker积与Hadamard积的性质。  相似文献   

6.
在矩阵的次转置矩阵、次正定复矩阵和半次正定复矩阵概念基础上,给出了次正定复矩阵行列式的一些不等式,即次正定Herimite矩阵与半次正定矩阵之间的行列式模的关系。  相似文献   

7.
复矩阵的次正定性   总被引:4,自引:0,他引:4  
给出了复矩阵的次正定性概念,并得出它的一些性质。  相似文献   

8.
对两类特殊的分块复矩阵的次亚正定性进行研究,给出了由低阶矩阵的次亚正定判别分块二阶、三阶次Hermite矩阵的次亚正定性的充要条件,进而将其推广为一般的分块复矩阵的讨论,给出了分块复矩阵的次亚正定性的新判据.  相似文献   

9.
文章对一类复矩阵的次亚正定性进行了研究,给出了由低阶矩阵的次亚正定判别分块二阶次Hermite矩阵的次亚正定性的充要条件.  相似文献   

10.
讨论了半正定复矩阵的性质和半正定复矩阵的k阶主子阵、Kronecker积和Hadamard积的性质,给出半正定复矩阵特征值的估计。  相似文献   

11.
设N是零对称的素拟环,证明了:(i)若N是2-挠自由的,d1,d2是N上的两个导子,则下列3条件等价:(1)d1d2是一个导子;(2)d1(x)d2(y)+d2(x)d1(y)=0,任意x,y∈N;(3)d1=0或d2=0.(ii)设N是挠自由的,若N容纳两个非零导子d1,d2,使得[d1(x),d2(y)]=0,任意x,y∈N,则N不能容纳任何非零的幂零导子.  相似文献   

12.
研究了复正规矩阵的亚正定性,给出了复矩阵之积为复亚正定矩阵的一系列充要条件,获得了一些新的结果;改进并推广了Ky Fan Taussky定理、Fejer定理等。  相似文献   

13.
研究实矩阵的正定性,在数学理论或应用中具有重要意义和应用价值,是矩阵论中重要的热门课题之一.本文研究了实正规矩阵的亚正定性,利用特征值给出了实亚正定矩阵的一系列充要条件,获得了一些新的结果,改进并推广了Ky Fan Taussky定理和Fejer定理.  相似文献   

14.
次亚正定矩阵的几个性质   总被引:3,自引:0,他引:3  
研究了次亚正定矩阵的性质和一系列充分必要条件,主要得到了2 个结论:(1) n阶次亚正定矩阵的次特征值实部为正;(2) 当JA为实正规矩阵时,A是次亚正定矩阵的充分必要条件是A 的次特征值实部为正.讨论并给出了矩阵乘积是次亚正定矩阵的充分和充要条件.  相似文献   

15.
从复矩阵的运算性质、矩阵为复正定矩阵的一些充分条件与充分必要条件、两个矩阵乘积为复正定矩阵的充分必要条件、两个矩阵的Hadamard乘积是复正定矩阵的条件及其相关性质4个方面研究了复正定矩阵的性质,共给出了有关的20个命题,并证明了其中部分结论,而另一部分结论的证明容易在相关文献中查到。  相似文献   

16.
定义了复数域上的亚正定阵,讨论了其基本性质,推广了「1」、「2」中的一些结果。  相似文献   

17.
讨论了分块复矩阵的次正定性,给出了分块复矩阵的次正定性的一个新判据.  相似文献   

18.
给出了复正定矩阵的若干性质 ,并对某些复矩阵的行列式 ,建立了几个 Minkowski型不等式 ,从而拓广了 [1 ]、[2 ]中的一些结果 .  相似文献   

19.
次Hermite矩阵的次正定性   总被引:13,自引:1,他引:13  
若n阶次Hermite矩阵A,对任意非零向量X'=(x_1,x_2,…x_n)∈R ̄n,有AX>0,则称次Hermite矩阵A是次正定的.给出了判定次Hermite矩阵次正定的几个充要条件:定理n阶次Hermite矩阵A是次正定的,当且仅当下列条件之一成立:(l)Hermite矩阵JA是正定的;(2)存在n阶可逆复矩阵P,使AP=J;(3)次Hermite矩阵A的4k阶,4k十互阶下次主子式为正,4k+2阶,4k+3阶下次主子式为负;(4)存在n阶可逆复矩阵P,使其中λ_i>0,i=1,2,…,n。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号