首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
Gemini型表面活性剂的合成与性能表征   总被引:11,自引:2,他引:11  
以丙烯酸甲酯、不同的长链脂肪酸(癸酸、月桂酸、肉豆蔻酸、棕榈酸)及乙二胺为主要原料,经过加成、酰化及皂化等反应,合成了一类Gemini型阴离子表面活性剂N,N′-双脂肪酰基乙二胺二丙酸钠(DAMC)。实验还对合成的表面活性剂(C10-DAMC、C12-DAMC、C14-DAMC、C16-DAMC)相关性能进行了表征。在25℃时,γCMC 分别为28.3、27.1、34.7、41.0mN/m;临界胶束浓度(CMC)分别为3.4×10-3、9.6×10-4、3.8×10-4、1.3×10-4mol/L;胶束聚集数(Nm)分别为47.3、41.6、36.2、30.7。合成样品显示出优良的乳化、润湿、泡沫及耐硬水洗涤等应用性能。  相似文献   

2.
以二苯乙烷和长碳链脂肪酰氯为原料合成出Gemini磺酸表面活性剂,通过核磁氢谱和红外光谱对化合物的结构进行表征,测定了其水溶液的表面张力,得出其表面张力曲线,进而算出其他相关参数.3种Gemini表面活性剂的临界胶束浓度(CMC)值随烷基疏水碳链的增长而降低.与线性十二烷基苯磺酸钠(SDBS)相比,Gemini表面活性剂G12-2-12的C20值降低94.4%,CMC值降低91.3%.G12-2-12的饱和吸附面积(Amin)比对应单基表面活性剂的2倍降低27%,且Gemini表面活性剂在气液界面上排列更加紧密.  相似文献   

3.
在甲醇钠催化下,丁二酸二甲酯与N,N-二甲基乙醇胺进行酯交换反应合成二(二甲基胺基乙基)丁二酸酯,产率91.2%(以丁二酸二甲酯计);再与正溴代十二烷或正溴代十六烷反应合成了两种新型含丁二酸酯基的Gem in i阳离子表面活性剂n-CnH2n+1(CH3)2N+CH2CH2OCOCH2CH2COOCH2-CH2N+(CH3)2CnH2n+1-n.2B r(n=12或16)[以二(二甲基胺基乙基)丁二酸酯计,产率85%].研究了其在1 M HC l介质中对碳钢的缓蚀效果,结果表明,在1×10-3mol.L-1时,对碳钢的缓蚀效率分别为97.27%和98.10%.  相似文献   

4.
Gemini表面活性剂研究的新进展   总被引:30,自引:0,他引:30  
Gemini是一类新型的表面活性剂,其分子中的亲水基和疏水基均为两个或两个以上,并通过联接基团联接.从Gemini表面活性剂的聚集行为、体相性质及应用等方面,特别是针对近两年国际上的研究成果,进行了较为全面的评述.并对新近出现的一些Gemini表面活性剂的特殊结构做了介绍.  相似文献   

5.
Gemini表面活性剂的研究进展   总被引:5,自引:0,他引:5  
Gemini表面活性剂是类分子中含有两个或两个以上亲水亲油基团的新型表面活性剂.介绍了Gemini表面活性剂独特的胶束结构和界面吸附状态,讨论了几种类型Gemini表面活性剂的合成方法及产品性能,同时指出开发此类表面活性剂具有十分广泛的应用前景.  相似文献   

6.
Gemini表面活性剂是类分子中含有两个或两个以上亲水亲油基团的新型表面活性剂.介绍了Gemini表面活性剂独特的胶束结构和界面吸附状态,讨论了几种类型Gemini表面活性剂的合成方法及产品性能,同时指出开发此类表面活性剂具有十分广泛的应用前景.  相似文献   

7.
Gemini表面活性剂的合成及应用概述   总被引:1,自引:1,他引:0  
表面活性剂由于具有良好的表面性能及应用性能而被广泛应用于食品、医药、化工、油田化学品等众多领域。结合国内外的研究情况,根据极性头的电荷性质来分类,对Gemini表面活性剂合成线路做了全面介绍,并根据它的作用对其应用做了全面论述。  相似文献   

8.
通过测量开路电压、电导率等参数,测定了m-S-m.2Br型阳离子Gemini表面活性剂的临界胶束浓度(CMC)及其温度响应特点。实验结果表明:该类表面活性剂比传统阳离子表面活性剂具有更强的胶团生成能力,在所研究的温度范围内(20~55℃),CMC随温度的升高略有增大;根据质量作用模型计算所得的热力学数据表明:该类表面活性剂的胶束化过程服从熵驱动机理,并出现了焓/熵补偿现象。  相似文献   

9.
酯基Gemini型季铵盐表面活性剂的合成与性能   总被引:7,自引:0,他引:7  
合成了系列酯基Gemini型季铵盐表面活性剂:烷基α,ω双(二甲基酰氧乙基溴化铵).采用红外光谱和核磁共振进行结构分析;用两相化学滴定法测定活性物含量,结果表明:6种已合成的酯基Gemini型季铵盐表面活性剂的活性物质量分数均在98.5%以上.同时测定了产物的表面活性、泡沫性能和乳化性能,结果表明:酯基Gemini型季铵盐表面活性剂具有较高的表面活性,其临界胶束浓度介于4.46×10-5~4.17×10-4mol/L之间,而相应的单季铵盐表面活性剂C14TABr和C12TABr的临界胶束浓度分别为4.00×10-3mol/L及1.50×10-2mol/L;酯基Gemini型季铵盐表面活性剂的泡沫稳定性及乳化性能也明显优于相应的单季铵盐表面活性剂.  相似文献   

10.
在甲醇钠催化下,丁二酸二甲酯与N,N-二甲基乙醇胺进行酯交换反应合成二(二甲基胺基乙基)丁二酸酯,产率91.2%(以丁二酸二甲酯计);再与正溴代十四烷反应合成了一种新型含丁二酸酯基的Gemini阳离子表面活性剂C14H29(CH3)2N+CH2CH2OCOCH2CH2COOCH2CH2N+(CH3)2C14H29.2Br-,产率85%[以二(二甲基氨基乙基)丁二酸酯计];研究了这种双子表面活性剂在SiO2上的吸附规律,实验结果表明,该Gemini阳离子表面活性剂在SiO界面吸附规律符合Langmuir方程.  相似文献   

11.
合成一种含多个官能团的Gemini表面活性剂C16H33OCOCH2(CH3)2N+(CH2)3NHCOCH2CONH-(CH2)3N+(CH3)2CH2COOC16H33.2Br-(Ⅰ)并研究其表面性质.在丙酮溶剂中,二(3-二甲氨基丙基)丙二酰胺(Ⅱ)与过量的氯乙酸十六醇酯反应,经丙酮和乙腈混合溶剂重结晶得到白色固体产物,收率为82.6%(以Ⅱ计).采用IR、1H NMR对其结构进行表征.两相滴定法分析其纯度为99.8%;电导率法测定其CMC值为6.33×10-5mol.L-1;滴体积法测定其γCMC为34.89 mN.m-1;其Krafft点小于0℃.并研究了其乳化、泡沫性能.  相似文献   

12.
合成了2种含酯基的双子季铵盐型表面活性剂N,N’—双十二烷基—N,N,N’,N’—四甲基—1,6己二酸—二乙醇胺酯—二溴化铵(DTAD)和N,N’—双十二烷基—N,N,N’,N’—四甲基—对苯二甲酸—二乙醇胺酯—二溴化铵(DTTD)。通过HNMR和元素分析表征了其结构和组成。测定了这2种表面活性剂的临界胶束浓度(cmc)、胶束解离度(α)、起泡性和稳泡性。实验结果表明:DTAD的cmcα大于DTTD,但起泡性和稳泡性较DTTD稍差。对比联接基的结构进行了初步探讨,发现联接基结构和长度对表面活性剂表面活性具有明显影响。  相似文献   

13.
通过电导率和表面张力的测定,系统地研究了不同温度下烷基-α,ω-双(二甲基酰氧乙基溴化铵)(Ⅱ-12-s)酯基G em in i表面活性剂的表面活性及其溶液表面吸附和形成胶团的热力学函数。结果表明:在298~318 K,临界胶团浓度(CM C)和平衡表面张力(γ)分别为2.51×10-6~4.24×10-6m o l/L和32.9~34.2 mN/m,表面吸附和形成胶团的自由能分别为-68.78~-77.20kJ/m o l和-40.91~-49.80 kJ/m o l,Ⅱ-12-s在溶液、表面吸附及形成胶团过程中均为熵驱动过程。  相似文献   

14.
以葡萄糖和烷基胺(正辛胺、十二胺、十六胺)为原料制备了一系列不同链长的糖基双子表面活性剂,以傅里叶红外光谱和核磁共振氢谱表征了产物的结构.采用悬滴法和改进的Ross-Miles法对产物的表面张力、起泡性能进行了测试.结果表明,糖基双子表面活性剂可以将表面张力降低到33.038.6 mN/m,其临界胶束浓度在0.0738.6 mN/m,其临界胶束浓度在0.070.45 mmol/L范围内;同时,产物(A)和(B)具有良好的起泡性和稳泡性.这说明具有独特二聚结构的糖基双子表面活性剂有着更高的降低表面张力的能力和效率,表现出比传统线性表面活性剂优越的表面活性.  相似文献   

15.
通过硬脂酸和N-甲基二乙醇胺进行酯化反应得到硬脂酸甲基二乙醇胺双酯,再与γ-氯丙基甲基二甲氧基硅烷反应得到的双酯基有机硅季铵盐表面活性剂为研究对象,对其柔软性能、泡沫性能、再润湿力、白度、抗静电性等应用性能进行了重点研究,为其广泛的应用奠定基础.  相似文献   

16.
以二乙烯三胺、丙烯酸甲酯和月桂酰氯等原料,通过迈克尔加成反应、酰胺化缩合反应及皂化反应等合成了具有三烷基链羧酸盐型Gemini表面活性剂,应用红外光谱表征其结构,采用悬滴法考察了产物水溶液的表面活性,并计算出产品的饱和吸附量(Гmax)和单分子饱和吸附面积(Amin)。实验结果表明目标产物具有较好的表面活性,在25℃临界胶束浓度(cmc)为0.90mmol/L、表面张力(γcmc)为27.8mN/m,其表面活性优于传统的表面活性剂月桂酸钠(SL)和十二烷基硫酸钠(SDS)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号