首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to protect Nb-Ti-Si based ultrahigh temperature alloy from oxidation, pack cementation processes were utilized to prepare Ce and Y jointly modified silicide coatings. The Ce and Y jointly modified silicide coating has a double-layer structure: a relatively thick (Nb, X)Si2 (X represents Ti, Cr and Hf elements) outer layer and a thin (Ti, Nb)5Si4 transitional layer. The pack cementation experiments at 1150 ℃ for 8 h proved that the addition of certain amounts of CeO2 and Y2O3 powders in the packs distinctly influenced the coating thickness, the contents of Si, Ce and Y in the (Nb, X)Si2 outer layers, and the density of cavities in the coatings. In order to study the effects of Ce and Y joint modification in the silicide coatings, both only Ce and only Y modified silicide coatings were also prepared for comparison. The mechanisms of the beneficial effects of Ce and Y are discussed. A pack mixture containing 1.5CeO2-0.75Y2O3 (wt%) powders was employed to investigate the growth kinetics of the Ce and Y jointly modified silicide coating at 1050, 1150 and 1250 ℃. It has been found that the growth kinetics obeyed parabolic laws and the parabolic rate constants were 109.20 mm2/h at 1050 ℃, 366.75 mm2/h at 1150 ℃ and 569.78 mm2/h at 1250 ℃, and the activation energy for the growth of the Ce and Y jointly modified silicide coating was 197.53 kJ/mol.  相似文献   

2.
Rare earth oxides doping has been extensively investigated as one of the effective methods to lower thermal conductivity of 4.55 mol% Y2O3stabilized ZrO2(YSZ) thermal barrier coatings(TBCs).In the present work,5–6 mol% Yb2O3and Y2O3co-doped ZrO2ceramics were synthesized by solid reaction sintering at 1600 1C.The phase stability of the samples after heat treatment at 1500 1C was investigated.Yb2O3and Y2O3co-doped zirconia,especially when Yb2O3/Y2O3≥1,contained less monoclinic phase than single Yb2O3or Y2O3phase doped zirconia,indicating that co-doped zirconia was more stable at high temperature than YSZ.The thermal conductivity of the 3 mol% Yb2O3+3 mol% Y2O3co-doped ZrO2was 1.8 W m 1K 1at 1000 1C,which was more than 20% lower than that of YSZ.  相似文献   

3.
Synthesis and consolidation behavior of Cu–8 at%Cr alloy powders made by mechanical alloying with elemental Cu and Cr powders,and subsequently,compressive and electrical properties of the consolidated alloys were studied.Solid solubility of Cr in Cu during milling,and subsequent phase transformations during sintering and heat treatment of sintered components were analyzed using X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The milled powders were compacted applying three different pressures(200 MPa,400 MPa and 600 MPa)and sintered in H2atmosphere at 900 1C for 30 min and at 1000 1C for 1 h and 2 h.The maximum densification(92.8%)was achieved for the sample compacted at 600 MPa and sintered for 1000 1C for 2 h.Hardness and densification behavior further increased for the compacts sintered at 900 1C for 30 min after rolling and annealing process.TEM investigation of the sintered compacts revealed the bimodal distribution of Cu grains with nano-sized Cr and Cr2O3precipitation along the grain boundary as well as in grain interior.Pinning of grain boundaries by the precipitates stabilized the fine grain structure in bimodal distribution.  相似文献   

4.
A low cost chemical co-precipitation method was employed to fabricate nanoscale Al_2O_3-GdAlO_3-ZrO_2 powder with eutectic composition. A careful control of reaction conditions was required during the preparation. The synthesized nanopowders exhibited a particle size of 20-200 nm, and were highly dispersive and uniform. The results showed that calcination temperature had an important influence on the phase constituents of the nanopowders. With increasing the calcination temperature, a phase transformation from θ-Al_2O_3 to α-Al_2O_3 and a thermal decomposition from Gd_3 Al_5O_(12)(GdAG) to GdAlO_3 and α-Al_2O_3 occurred in sequence. A calcination temperature of 1300 ℃ was needed for the crystallization of α-Al_2 O_3. These nanosized powders were consolidated via hot pressing to produce a fully densified ceramic composite with eutectic composition. The Al_2O_3-GdAlO_3-ZrO_2 ceramic hot-pressed at 1500 ℃ exhibited a relative density of 99.4%, a flexural strength of 485 MPa and a fracture toughness of 6.5 MPa m~(1/2). The ceramic had a thermal conductivity of 1.9 W m K~(-1) at 1200 ℃ and a thermal expansion coefficient of 9.49 ×10~(-6) K~(-1) at 1100 ℃.  相似文献   

5.
Nickel-based superalloy DZ125 was first sprayed with a NiCrAlY bond coat and followed with a nanostructured 2 mol% Gd_2O_3-4.5 mol% Y_2 O_3-ZrO_2(2 GdYSZ) topcoat using air plasma spraying(APS). Hot corrosion behavior of the as-sprayed thermal barrier coatings(TBCs) were investigated in the presence of 50 wt%Na_2SO_4 + 50 wt% V_2O_5 as the corrosive molten salt at 900 ℃ for 100 h. The analysis results indicate that Gd doped YVO_4 and m-ZrO_2 crystals were formed as corrosion products due to the reaction of the corrosive salts with stabilizers(Y_2O_3, Gd_2O_3) of zirconia. Cross-section morphology shows that a thin layer called TGO was formed at the bond coat/topcoat interface. After hot corrosion test, the proportion of m-ZrO_2 phase in nanostructured 2GdYSZ coating is lower than that of nano-YSZ coating. The result reveals that nanostructured 2GdYSZ coating exhibits a better hot corrosion resistance than nano-YSZ coating.  相似文献   

6.
Al2O3 –TiC/TiCN–Fe composite powders were successfully prepared directly from ilmenite at 1300–1400℃.The effects of Al/C ratio,sintering atmosphere,and reaction temperature and time on the reaction products were investigated.Results showed that the nitrogen atmosphere was bene cial to the reduction of ilmenite and the formation of Al2O3 –TiC/TiCN–Fe composite powders.When the reaction temperature was between 600 and 1100℃,the intermediate products,TiO2,Ti3O5 and Ti4O7 were found,which changed to TiC or TiCN at higher temperature.Al/C ratio was found to affect the reaction process and synthesis products.When Al addition was 0.5 mol,the Al2O3 phase did not appear.The content of carbon in TiCN rose when the reaction temperature was increased.  相似文献   

7.
The 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) powder had three particle size distributions, while the fine one was lower than 100 nm. The 3Y-TZP compact was prepared by dry-pressing under pressures ranged from 10 to 30 MPa and then presintered at 1250°C for 2 h. The matrix dry-pressed under the pressure of 20 MPa had a porosity of 16.7% and could be easily processed by computer aided design and computer aided manufacturing (CAD/CAM), and which had been infiltrated by the La2O3–Al2O3–SiO2 glass at 1200°C for 4 h. The flexural strength and fracture toughness of the composite were 710.7 MPa and 6.51 MPa m1/2, respectively. The low shrinkage (0.3%) of the composite can satisfy the net-shape fabrication standard. XRD results illustrated that zirconia in the La2O3–Al2O3–SiO2 glass-infiltrated 3Y-TZP all-ceramic composite was mainly in the tetragonal phase. SEM and EDS results indicated that the pores of the matrix were almost filled by the La2O3–Al2O3 –SiO2 glass  相似文献   

8.
CuO-doped CaSiO3–1 wt% Al2O3 ceramics were synthesized via a traditional solid-state reaction method, and their sintering behavior,microstructure and microwave dielectric properties were investigated. The results showed that appropriate CuO addition could accelerate the sintering process and assist the densification of CaSiO3–1 wt% Al2O3 ceramics, which could effectively lower the densification temperature from1250 1C to 1050 1C. However, the addition of CuO undermined the microwave dielectric properties. The optimal amount of CuO addition was found to be 0.8 wt%, and the derived CaSiO3–Al2O3ceramic sintered at 1100 1C presented good microwave dielectric properties of εr?7.27,Q f?16,850 GHz and τf? 39.53 ppm/1C, which is much better than those of pure CaSiO3 ceramic sintered at 1340oC(Q f?13,109 GHz).The chemical compatibility of the above ceramic with 30 Pd/70 Ag during the cofiring process has also been investigated, and the result showed that there was no chemical reaction between palladium–silver alloys and ceramics.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

9.
A porous Co_3O_4 with a particle size of 1–3 μm was successfully prepared by heating Co-based metal organic frameworks MOF-74(Co) up to 500 °C in air atmospheric conditions. The as-prepared porous Co_3O_4 significantly reduced the dehydrogenation temperatures of the LiBH_4-2LiNH_2 system and improved the purity of the released hydrogen. The LiBH_4-2LiNH_2-0.05/3Co_3O_4 sample started to release hydrogen at 140 °C and released hydrogen levels of approximately 9.7 wt% at 225 °C. The end temperature for hydrogen release was lowered by 125 °C relative to that of the pristine sample. Structural analyses revealed that the as-prepared porous Co_3O_4 is in-situ reduced to metallic Co, which functions as an active catalyst, reducing the kinetic barriers and lowering the dehydrogenation temperatures of the LiBH_4-2LiNH_2 system. More importantly, the porous Co_3O_4-containing sample exhibited partially improved reversibility for hydrogen storage in the LiBH_4-2LiNH_2 system.  相似文献   

10.
An investigation on oxidation behavior of coated Ni-based single crystal superalloy in different surface orientations has been carried out at1100 ℃. It has been found that the {100} surface shows a better oxidation resistance than the {110} one, which is attributed that the {110}surface had a slightly higher oxidation rate when compared to the {100} surface. The experimental results also indicated that the anisotropic oxidation behavior took place even with a very small difference in the oxidation rates that was found between the two surfaces. The differences of the topologically close packed phase amount and its penetration depth between the two surfaces, including the ratio of α-Al2O3 after 500 h oxidation, were responsible for the oxidation anisotropy.  相似文献   

11.
Hybrid mullite sol was synthesized from an aqueous solution of aluminum nitrate (AN), aluminum isopropoxide (AIP) and tetraethylorthosilicate (TEOS), doped with boehmite sol with different ratios. Pressureless sintering of the xerogel was carried out at different temperatures in the presence of boehmite doping. The xerogel and sintered powder were characterized by FTIR, TG-DSC, XRD, SEM and bulk density. The addition of boehmite caused the formation of metaphase spinel (6Al2O3·SiO2) crystal before the appearance of mullite phase, which could lead to the formation of amorphous phase and suppress the premature formation of mullite. Both of these effects improve the densification of mullite. A maximum density about 98% of the theoretical density (TD, 3.01 g/cm3 ) of mullite could be obtained for 5 wt% boehmite addition at 1200 1C pressureless sintering.  相似文献   

12.
The effect of B2O3 addition on the aqueous tape casting, sintering, microstructure and microwave dielectric properties of Li2O-Nb2O5-TiO2 ceramics has been investigated. The tape casting slurries exhibit a typical shear-thinning behavior without thixotropy, but the addition of B2O3 increases the viscosity of the slurries significantly. It was found that doping of B2O3 can decrease the tensile strength, strain to failure and density of the green tapes. The sintering temperature could be lowed down to 900℃ with the addition of 2 wt% B2O3 due to the liquid phase effect. No secondary phase is observed. The addition of B2O3 does not induce much degradation on the microwave dielectric properties. Optimum microwave dielectric properties of εr 67, Q×f 6560 GHz are obtained for Li2O-Nb2O5-TiO2 ceramics containing 2 wt% B2O3 sintered at 900 1C. It represents that the ceramics could be promising for multilayer low-temperature co-fired ceramics (LTCC) application.  相似文献   

13.
The ternary magnesium hydride NaMgH 3 has been synthesised via reactive milling techniques.The method employed neither a reactive H2 atmosphere nor high pressure sintering or other post-treatment processes.The formation of the ternary hydride was studied as a function of milling time and ball:powder ratio.High purity NaMgH 3 powder(orthorhombic space group Pnma,a 5.437(2),b 7.705(5),c 5.477(2) ;Z 4) was prepared in 5 h at high ball:powder ratios and characterised by powder X-ray diffraction(PXD),Raman spectroscopy and scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDX).The products formed sub-micron scale(typically 200-400 nm in size) crystallites that were approximately isotropic in shape.The dehydrogenation behaviour of the ternary hydride was investigated by temperature programmed desorption(TPD).The nanostructured hydride releases hydrogen in two steps with an onset temperature for the first step of 513 K.  相似文献   

14.
Cu(In,Ga)Se2 (CIGS) thin films were prepared by directly sputtering Cu(In,Ga)Se2 quaternary target consisting of Cu:In:Ga:Se 25:17.5:7.5:50 at%. The composition and structure of CIGS layers have been investigated after annealing at 550 ℃ under vacuum and a Se-containing atmosphere. The results show that recrystallization of the CIGS thin film occurs and a chalcopyrite structure with a preferred orientation in the (112) direction was obtained. The CIGS thin film annealed under vacuum exhibits a loss of a portion of Se, while the film annealed under Se-containing atmosphere reveals compensation of Se. Several solar cells with three different absorber thicknesses were fabricated using a soda lime glass/Mo/CIGS/CdS/i-ZnO/ZnO:Al/Al grid stack structure. The highest conversion efficiency of 9.65% with an open circuit voltage of 452.42 mV, short circuit current density of 32.16 mA cm2 and fill factor of 66.32% was obtained on a 0.755 cm2 cell area.  相似文献   

15.
Ti_(50)Zr_(27)Cu_8Ni_4Co_3Fe_2Al_3Sn_3(at%) amorphous filler metal with low Cu and Ni contents in a melt-spun ribbon form was developed for improving mechanical properties of Ti–6Al–4V alloy brazing joint through decreasing brittle intermetallics in the braze zone. Investigation on the crystallization behavior of the multicomponent Ti–Zr–Cu–Ni–Co–Fe–Al–Sn amorphous alloy indicates the high stability of the supercooled liquid against crystallization that favors the formation of amorphous structure. The Ti–6Al–4V joint brazed with this Ti-based amorphous filler metal with low total content of Cu and Ni at 1203K for 900s mainly consists of α-Ti, β-Ti,minor Ti–Zr-rich phase and only a small amount of Ti_3Cu intermetallics, leading to the high shear strength of the joint of about 460 MPa. Multicomponent composition design of amorphous alloys is an effective way of tailoring filler metals for improving the joint strength.  相似文献   

16.
In the present work,one dimensional La0.8Sr0.2Co0.2Fe0.8O3 δ(LSCF) nanofibers with the mean diameter of about 100 nm prepared by electrospinning were deposited on Gd0.2Ce0.8O1.9(GDC) electrolyte followed by sintering to form one dimensional LSCF nanofiber cathode. And LSCF/GDC composite cathodes were formed by introducing GDC phases into LSCF nanofiber scaffold using infiltration method. The polarization resistances for the composite cathode with an optimal LSCF/GDC mass ratio of 1/0.56 are 0.27,0.14 and 0.07 Ω cm2at 650,700 and750 1C,respectively,which are obviously smaller than 2.26,0.78 and 0.29 Ω cm2of pure LSCF nanofiber cathode. And the activation energy is1.194 eV,which is much lower than that of pure LSCF nanofiber cathode(1.684 eV). These results demonstrate that the infiltration of GDC into LSCF nanofiber scaffold is an effective approach to achieve high performance cathode for solid oxide fuel cells(SOFCs). In addition,the performance of composite cathode in this work was also compared with that of our previous nanorod structured LSCF/GDC composite cathode.  相似文献   

17.
Photocatalyst, lead sulfide (PbS )-intercalated layer perovskite-type compound (K2La2Ti3O10), was synthesized via ion-exchange reaction, butylamine pillaring and sulfuration processes under the assistance of the microwave irradiation. The structure of the photoc atalysts was determined by means of powder X-ray diffraction, scanning electron microscope, ultraviolet- visible diffuse reflection spectra and photoluminescence measu rement. And the photocatalytic activity of the composite compound for hydrogen production was also investigated. The experimental results showed that the intercalation of PbS in the layered space of K2La2Ti3O10 greatly improved the absorption edge and the photocatalytic activity. Hydrogen production of the PbS–K2La2Ti3O10 was 127.19 mmol/(g cat) after 3 h irradiation of ultraviolet light.  相似文献   

18.
In this article Fischer–Tropsch(FT) synthesis was studied over cobalt nanoparticles supported on modifed Montmorillonite(Zr-PILC).Co-loaded/Zr-PILC catalysts were synthesized by hydrothermal methods and were characterized by XRD,XRF,BET,H2-TPR,TGA and SEM techniques.FT reactions were carried out in fxed bed microreactor(T 225 1C,260 1C and 275 1C,P 1,5 and 10 bars).The FT-products obtained over Co-loaded/Zr-PILC catalysts showed increased selectivity of C2–C12hydrocarbons and decreased selectivity towards CH4and higher molecular weight hydrocarbons(C21) at a TOS of 2–30 h as compared to the Co-loaded/NaMMT catalysts.With increase in reaction temperature from225 1C to 275 1C,CO-conversion and CH4selectivity increases while that of C5+hydrocarbons decreases.Decrease in CH4selectivity while increase in C5+hydrocarbons and CO-conversion were observed on increasing the pressure of reaction.  相似文献   

19.
In this study, the hyperbolic-sine type constitutive equation was used to model the flow stress of annealed AZ61 magnesium(Mg) alloys. Hot compression tests were conducted at the temperatures ranging from 250 1C to 450 1C and at the strain rates ranging from 1 10–3s 1to 1 s 1on a Gleeble-3500 thermo-simulation machine. Constitutive equations as a function of strain were established through a simple extension of the hyperbolic sine constitutive relation. The effects of annealing heat treatments on the variations in constitutive parameters with strain were discussed. The hot compressive flow curves exhibited typical features of dynamic recrystallization. Multiple peak flow curves were observed in the annealed specimens upon testing at a strain rate of 1 10 1s–1and at various temperatures. Variations in constitutive parameters with strain were related to flow behavior and dependent on the initial conditions of the test specimens. The flow stresses of annealed AZ61 Mg alloys were predicted well by the strain-dependent constitutive equations of the hyperbolic sine function under the deformation conditions employed in this study.  相似文献   

20.
Ni based amorphous materials have great potential as hydrogen purification membranes. In the present work the melt spun(Ni_(0.6)Nb_(0.4-y)Ta_y)_(100-x)Zr_x with y=0, 0.1 and x=20, 30 was studied. The result of X-ray diffraction spectra of the ribbons showed an amorphous nature of the alloys. Heating these ribbons below T 400 °C, even in a hydrogen atmosphere(1-10 bar), the amorphous structure was retained. The crystallization process was characterized by differential thermal analysis and the activation energy of such process was obtained. The hydrogen absorption properties of the samples in their amorphous state were studied by the volumetric method,and the results showed that the addition of Ta did not significantly influence the absorption properties, a clear change of the hydrogen solubility was observed with the variation of the Zr content. The values of the hydrogenation enthalpy changed from ~37 k J/mol for x=30 to ~9 k J/mol for x=20. The analysis of the volumetric data provides the indications about the hydrogen occupation sites during hydrogenation, suggesting that at the beginning of the absorption process the deepest energy levels are occupied, while only shallower energy levels are available at higher hydrogen content, with the available interstitial sites forming a continuum of energy levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号