首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
为了深入了解半焦与CO2的气化反应过程动力学,本文通过不同升温速率下的非等温实验,确定在不同阶段下富鼎半焦与CO2的气化机理.采用分段尝试法研究富鼎半焦与CO2气化反应过程动力学,确定反应过程前期与后期的机理函数分别为f(α)=(1-α)[1-ψln(1-α)]1/2和f(α)=(3/2)[(1-α)-1/3-1]-1,从而建立相应动力学模型,计算反应过程不同阶段的动力学参数.通过对不同阶段的动力学模型进行数据拟合,实验数据与模型吻合较好,相关系数都大于0.98.最后,根据求得的动力学参数,确定不同升温速率下活化能的补偿效应,即活化能与指前因子的关系式.  相似文献   

2.
动态自催化固化反应动力学研究中的机理函数基于SB公式,动力学模型需要拟合4个参数:指前因子A、活化能Ea、反应阶数m、n.本文中采用非线性最小二乘回归方法,拟合结果表明4个参数的非线性回归结果不稳定,尤其表现在参数A与m的估计结果上.笔者对造成上述结果的原因进行了分析,指出由于模型参数效应曲率相当大,增加了模型的非线性强度,使得最小二乘回归分析结果不可靠.根据实验数据特征,本文中在不确定机理函数形式前提下,运用Model-free方法,先获得活化能平均意义下的估计值,再进行参数A、m、n的非线性最小二乘回归分析.结果表明减少回归函数参数个数,可极大程度降低模型的非线性强度,从而获得有效的动力学参数估计.  相似文献   

3.
提出了一种新的研究固相反应动力学和机理的新方法.该方法是在几条TA曲线上同一温度和同一转化率α处的数据进行动力学分析,从而获得动力学三因子(kinetic triplet),即活化能E、指前因子A、机理函数f(α).其优点是活化能与机理函数分别求取,而且确定机理函数时不受E值的影响,求E值时也不受机理函数的影响.  相似文献   

4.
动态自催化固化反应动力学研究中的机理函数基于SB公式,动力学模型需要拟合4个参数:指前因子A、活化能Ea、反应阶数m、n.本文中采用非线性最小二乘回归方法,拟合结果表明4个参数的非线性回归结果不稳定,尤其表现在参数A与m的估计结果上.笔者对造成上述结果的原因进行了分析,指出由于模型参数效应曲率相当大,增加了模型的非线性强度,使得最小二乘回归分析结果不可靠.根据实验数据特征,本文中在不确定机理函数形式前提下,运用Model-free方法,先获得活化能平均意义下的估计值,再进行参数A、m、n的非线性最小二乘回归分析.结果表明减少回归函数参数个数,可极大程度降低模型的非线性强度,从而获得有效的动力学参数估计.  相似文献   

5.
本文利用普适积分法、微分法来拟合求解50nm和500nm铁粉在10K?min-1、20K?min-1、30K?min-1和40K?min-1升温速率下的燃烧动力学参数,并确定纳米铁粉燃烧反应的动力学模型和最概然机理函数。30种机理函数的计算结果表明,50nm铁粉的活化能和指前因子的数值范围分别为90~130KJ?mol-1和103~108s-1,500nm铁粉的活化能和指前因子的数值范围分别为160~220KJ?mol-1和106~1011s-1,纳米铁粉的燃烧反应动力学模型为随机成核和随后生长,机理符合Avrami-Erofeev方程,最概然机理积分函数为G(α)=[-ln(1-α)]3,微分函数为f(α)= (1-a)[-ln(1-a)]-2/3。  相似文献   

6.
本文研究了用强酸性阳离子树脂K2641作为催化剂,由乙酸与异戊醇酯化反应合成乙酸异戊酯的动力学行为。实验在一个间隙反应器中进行。通过测定反应体系中乙酸浓度随时间的变化,对实验数据进行拟合,应用Arrhenius公式,得到了反应动力学方程:r=-dc乙酸dt=0.3656 dm3/mol.se-30120RT J/molc乙酸c异戊醇-8.44.04 mol/dm3.se-49750RT J/mol。正反应的表观活化能和指前因子分别为:30.12 kJ/mol和0.365 mol.dm3/mol.s。逆反应的表观活化能和指前因子分别为:49.75 kJ/mol和844.04 mol/dm3.s。  相似文献   

7.
用非等温热重法研究了Ni(CH3COO)2*4H2O脱水反应的动力学方程和动力学参数,实验数据以Achar法、Coats-Redfern法、MKN法处理得到脱水反应的动力学方程为dα/dt=Aexp(-E/RT)(1-α),活化能为E=91.30 kJ/mol,指前因子lg(A/S-1)=10.37,对反应的动力学补偿效应方程进行了研究.  相似文献   

8.
由二甲苯在ZSM-5沸石上异构化动力学研究,发现其动力学参数A(指前因子)和Ea(表观活化能)存在互补关系,并根据异构化过程的吸附,活化热力学和动力学的关联,阐明了这一反应体系的补偿行为归因于吸附过程、活化过程的焓变和熵变是互相补偿的,说明二甲苯在ZSM-5沸石上异构化动力学的补偿效应是这一反应体系内在规律的必然结果.  相似文献   

9.
以热重分析法(TG,DTG)为手段,对丙烯腈-丁二烯-苯乙烯共聚物(ABS)的热降解动力学进行了研究。采用Sestak复杂机制进行了非线性拟合处理,得到了ABS降解反应在不同升温速率β及不同转化率α下的活化能E,指前因子A,反应级数等动力学参数。表明,参数定性一和重复性均很好。讨论了Sestak机制在求解动力学参数及描述降解反庆机制中的优缺点。  相似文献   

10.
丙烯腈-丁二烯-苯乙烯共聚物的热降解动力学   总被引:2,自引:0,他引:2  
以热重分析法(TG、DTG)为手段,对丙烯腈-丁二烯-苯乙烯共聚物(ABS)的热降解动力学进行了研究。采用Scstak复杂机制进行了非线性拟合处理,得到了ABS降解反应在不同升温速率β及不同转化率α下的活化能E、指前因子A、反应级数等动力学参数。实验表明,参数的稳定性和重复性均很好。讨论了Sestak机制在求解动力学参数及描述降解反应机制中的优缺点。  相似文献   

11.
生物质焦与煤混合燃烧特性及动力学分析   总被引:2,自引:0,他引:2  
利用热重分析天平,采用非等温燃烧的方法对生物质热解产物——生物质焦与两种无烟煤混合试样的燃烧特性及其反应动力学参数进行了实验研究,考察了不同配比的混合试样的着火温度、燃烧速率最大时温度、燃尽温度和最大燃烧速率等燃烧特征参数,求出了反应的动力学参数活化能Ea和指前因子A.结果表明:活化能和指前因子均随混煤中生物质焦比例的增加而降低,存在动力学补偿效应;煤中掺入生物质焦后,试样燃烧的第一阶段和第二阶段的活化能分别呈现出"U形"曲线和"阶梯形"曲线的规律,且对混合燃料热解过程的作用要优于对固定碳燃烧过程的作用;活化能的计算表明生物质焦的存在有助于改善煤的着火性能,对煤的燃烧有催化促进作用.  相似文献   

12.
FeS诱发含硫油品自燃的事故受到了业界的日益关注。通过在不同升温速率(2,5,8,10,15℃/min)下的热分析实验,应用模型和非模型拟合研究了FeS的热分解动力学机理,结果表明:FeS受热氧化是FeS与氧气物理吸附、化学吸附和化学反应过程,对FeS的模型拟合结果不稳定,可靠性较差;采用等转化率法得到FeS热分解的表观活化能E=(135.81±8.27)kJ/mol;通过Satava-Sestak方程确定了FeS的受热分解符合成核和生长模型函数A2:g(α)=[-ln(1-α)]1/2,其表观活化能E=148.43kJ/mol,表观指前因子A=3.82×109 K/s。  相似文献   

13.
采用自建的热重分析仪进行分析纯CaCO3和石灰石2种不同钙基吸收剂煅烧分解的热重实验,得到温度对2种钙基吸收剂煅烧反应动力学参数的影响规律,考察动力学参数间的补偿效应.研究结果表明:分析纯CaCO3和石灰石煅烧反应动力学参数随煅烧温度变化而变化,二者的变化规律并不相同;但是各自的表观活化能和指前因子随温度的变化规律相似,存在动力学补偿效应.通过对反应性指数、反应速率常数以及补偿线差异的分析,得出补偿线的高低可以成为判别不同钙基吸收剂分解快慢的一个依据.  相似文献   

14.
通过热重分析法对福城煤的热失重行为进行研究,并用Coats-Redfern法计算和比较不同升温速率下煤的热解反应活化能、指前因子.结果表明,升温速率对样品最终失重量没有明显影响;最大失重速率峰随升温速率升高向高温偏移;较低升温速率下热解反应受煤的结焦影响较大.福城煤热解可由3个独立的一级反应来表示;随着升温速率的增加,中间阶段活化能降低而第三阶段活化能增加,活化能与指前因子间存在动力学补偿效应.  相似文献   

15.
用等温热重法和非等温热重法研究了Co(CH3COO)2.4H2O的脱水反应.在51.4℃、55.9℃、59.6℃、61.4℃下的等温热重数据由等转化率下的lnt=E/RT ln[g(α)/A]进行拟合确定了活化能的大小;升温速率为10℃/min的非等温热重曲线显示Co(CH3COO)2.4H2O的脱水反应发生在55.1~100.2℃,其数据通过Doyle-Zsako法进行拟合,以线性相关系数为判据并结合等温热分析拟合结果,得到该脱水反应的非等温积分动力学模式函数g()α=1-(1-α)1/2,相应的动力学方程是dα/dt=Aexp(-E/RT).2.(1-α)1/2,活化能E=74.16 kJ.mol-1,指前因子lg[A/s-1]=11.48.  相似文献   

16.
用等温热重法和非等温热重法研究了Co(CH3COO)2.4H2O的脱水反应.在51.4℃、55.9℃、59.6℃、61.4℃下的等温热重数据由等转化率下的lnt=E/RT+ln[g(α)/A]进行拟合确定了活化能的大小;升温速率为10℃/min的非等温热重曲线显示Co(CH3COO)2.4H2O的脱水反应发生在55.1~100.2℃,其数据通过Doyle-Zsako法进行拟合,以线性相关系数为判据并结合等温热分析拟合结果,得到该脱水反应的非等温积分动力学模式函数g()α=1-(1-α)1/2,相应的动力学方程是dα/dt=Aexp(-E/RT).2.(1-α)1/2,活化能E=74.16 kJ.mol-1,指前因子lg[A/s-1]=11.48.  相似文献   

17.
在高压间歇釜式反应器中,考察了6种催化剂对三氯氢硅(TCS)歧化反应的催化效果.选取催化效果最佳的大孔弱碱性阴离子交换树脂PA100为催化剂,研究了催化剂用量、颗粒尺寸、温度和反应时间对三氯氢硅歧化反应的影响,并通过测定不同反应条件下三氯化硅转化率随时间的变化,获得三氯氢硅歧化反应的动力学模型.结果表明,在催化剂用量为0.133,4,gcat/gTCS、温度为343.15,K的条件下PA100的催化活性最好.获得的动力学模型表明,三氯氢硅歧化反应为二级反应,正反应的指前因子和活化能分别为5.292,m3/(kmol·s)和38.498,k J/mol,逆反应的指前因子和活化能分别为4.779,m3/(kmol·s)和27.387,k J/mol.在实验条件范围内对获得的动力学方程进行了验证,误差小于5%,表明模型具有较好的拟合精度,能准确反映三氯氢硅歧化反应过程及其动力学特征.  相似文献   

18.
对-叔丁基杯[4]的热力学和热分析动力学   总被引:3,自引:0,他引:3  
用热重TG和DSC对杯芳烃对-叔丁基杯[4]热分解过程进行了研究,用多升温速率法和单升温速率法相结合的方法推断出了对-叔丁基杯[4]热分解的可能过程,并推断出了其可能的裂解反应动力学方程及热分析动力学参数;得出了结论脱包结甲苯的过程为23号机理函数,为三级反应过程,动力学方程为dα/dt=Ae-(E)/(RT)(1)/(2)(1-α)3;;表观活化能E为166.97 kJ*mol-1,指前因子A为1.67×1016 s-1;自身热分解脱去叔丁基的过程为1号机理函数,反应过程为一维扩散,动力学方程为dα/dt=Ae-(E)/(RT)(1)/(2)α;活化能E为248.89 kJ*mol-1,指前因子A为42.89 s-1.  相似文献   

19.
不饱和聚酯树脂/CaCO3体系固化动力学非等温DSC研究   总被引:3,自引:0,他引:3  
采用示差扫描量热(DSC)法对不饱和聚酯树脂(UP树脂)/CaCO3复合体系的固化过程进行研究,得出不同升温速率下UP树脂/CaCO3复合体系固化过程中的DSC曲线,并由动态DSC曲线求出固化反应的活化能、固化反应级数及动力学方程中的指前因子等参数,建立了复合体系固化反应动力学的数学模型。  相似文献   

20.
碳酸钙热分解反应动力学的不同方法研究   总被引:4,自引:0,他引:4  
因比较法和主曲线法在求算热分解动力学"三因子"时基本原理和处理方法不同,为此而探讨了2种方法处理的结果是否一致.利用热重分析(TGA)技术研究了碳酸钙热分解过程,通过这2种方法分别求算了碳酸钙热分解反应动力学"三因子".比较法结果:活化能Ea为174.00kJ·mol-1,指前因子A为9.63×106s-1,机理函数微分形式和积分形式分别为f(α)=2(1-α)1/2和g(α)=1-(1-α)1/2;主曲线法结果:活化能Eα=169.81 kJ/mol,指前因子A=3.84×106s-1,机理函数微分表达式为f(α)=2(1-α)1/1.57,积分表达式为g(α)=1-(1-α)1/1.57,2种方法所得结果基本吻合,说明这2种方法判定动力学"三因子"的一致性和可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号