首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
通过控制膜生物反应器(MBR)中溶解氧(DO)浓度、碳氮比(C/N)、污泥浓度(MLSS)和水力停留时间(HRT)等摸索了实现同步硝化反硝化的工艺条件,同时对好氧反应器中实现同步硝化反硝化的机理进行了探讨.化学需氧量(COD)在250 mg/L左右,C/N为10~30∶1,MLSS为5 g/L,HRT为5.0 h,DO为0.6~0.8 mg/L时,总氮去除率达86.0%,取得了良好的总氮去除效果,表明由于好氧反应器中缺氧区的存在,控制好操作条件可以实现同步硝化反硝化.体系中氨氮、硝态氮浓度的变化与总氮去除的关系说明短程反硝化现象的存在,而且在实现同步硝化反硝化过程中发挥着重要的作用.  相似文献   

2.
对比研究了常规与高MLSS(混合液悬浮固体浓度)条件下,A~2/O(厌氧—缺氧—好氧)工艺对低碳城市污水中有机物的去除效率和脱氮、除磷的效率.结果表明:常规MLSS条件下,由于废水中碳源不足影响了缺氧段的反硝化效率,导致部分时段出水总氮质量浓度超标.提高A~2/O工艺的MLSS达到(5 000±500)mg/L,有机物去除效果基本不变,但出水总氮质量浓度明显下降(均值达到9.5mg/L),且好氧段硝化效果轻微增强.但受高MLSS条件下污泥龄长导致污泥产量低的影响,除磷效果下降,出水总氮升高.继续降低好氧段DO(溶解氧)浓度,并不会影响高MLSS条件下A~2/O工艺的硝化和反硝化效果.  相似文献   

3.
以聚乙烯醇(PVA)包埋反硝化污泥,制得粒径为2.7、3.6和4.8,mm的3种包埋微球,考察p H值、温度和溶解氧(DO)对不同粒径微球的短程反硝化过程的影响.结果表明,微球在厌氧条件下对NO2--N的降解符合零级反应动力学模型,且随粒径的增大,NO2--N降解速率(以NO2--N计)由14.2,mg/(L·h)降至13.3,mg/(L·h).与游离污泥相比,包埋微球对p H值和温度的耐受范围显著扩大.在p H=5.7时,粒径2.7、3.6和4.8,mm微球的NO2--N比降解速率(以N/MLVSS计)分别是游离污泥的1.5、1.8和2.1倍;而4,℃和48,℃时,不同粒径微球的NO2--N比降解速率差异并不显著.当DO为0.5~0.7,mg/L和1.0~1.2,mg/L时,受到NO2-和O2传质的双重影响,粒径为3.6,mm的微球表现出最高比降解速率(22.0和16.2,mg/(g·h)),是相同条件下游离污泥的2.8和8.0倍.  相似文献   

4.
DO对膜生物反应器中同步硝化反硝化的影响   总被引:1,自引:0,他引:1  
采用人工配制的生活污水作为原水,考察了在膜生物反应器(MBR)中不同溶解氧(DO)对于同步硝化反硝化效果的影响.结果表明,将试验条件控制在TN容积负荷为0.35 kgN/(m3*d)、HRT为6 h、SRT为30 d、pH为7~8、温度为25~28 ℃、C/N为9时:在反应器DO的质量浓度为0.6 mg/L条件下,可获得62.5%的NH+4 -N去除率、91.1%的反硝化率和58.3%的SND率;在反应器DO的质量浓度为1.0 mg/L条件下,可获得90.8%的NH+4-N去除率、90.4%的反硝化率和82.5%的SND率;在反应器DO的质量浓度为1.4 mg/L时,可获得93.3%的NH+4-N去除率、77.0%的反硝化率和72.1%的SND率.  相似文献   

5.
亚硝酸盐对反硝化除磷菌抑制机理研究   总被引:2,自引:1,他引:1  
利用静态试验研究了亚硝酸盐质量浓度对反硝化吸磷的影响,并且对亚硝酸盐对反硝化吸磷抑制机理进行了深入分析.试验结果表明,缺氧初始NO2--N质量浓度在20 mg/L以下时,NO2-- N可以作为电子受体,但随着NO2--N质量浓度的增加,反硝化速率和吸磷速率都会降低;缺氧初始NO2--N质量浓度在大于20 mg/L时,亚硝酸盐不能作为电子受体.亚硝酸对反硝化作用的抑制可能来自于亚硝酸还原酶活性被抑制及 ATP的消耗量减少.亚硝酸盐对缺氧吸磷作用的抑制可能来自于及反硝化吸磷相关的酶活性被抑制、反硝化作用被抑制使其产能减少及反硝化中间产物抑制缺氧吸磷.  相似文献   

6.
不同电子受体影响下的反硝化除磷过程   总被引:1,自引:0,他引:1  
为进一步了解反硝化除磷菌的代谢行为,以序批式反应器(SBR)在厌氧/好氧条件下培养的活性污泥为对象,进行批次试验,研究了不同电子受体对反硝化缺氧吸磷的影响.结果证实:只要有电子受体存在,不论是硝氮(NO3--N)还是亚硝氮(NO2--N),缺氧吸磷都会发生,但NO2--N的缺氧吸磷量相对较少;反应开始时的电子受体质量浓度对反应过程影响很大,试验中NO3--N质量浓度为30mg/L、NO2--N质量浓度为20mg/L时吸磷量和吸磷速率均达到最高值;低于该值时,吸磷量和吸磷速率随着电子受体质量浓度的提高而增加;高于该值时,吸磷量和吸磷速率随着电子受体质量浓度的提高而减少;NO2--N质量浓度达80mg/L时,没有发现对反应的抑制作用;好氧吸磷效果好于缺氧吸磷.试验还发现反应器在厌氧/缺氧条件下连续运行时,反硝化除磷菌的厌氧释磷和缺氧吸磷能力将很快丧失.  相似文献   

7.
目的研究碳源种类对双泥生物膜亚硝化反硝化除磷工艺脱氮除磷的影响程度.方法以甲醇、淀粉、葡萄糖、乙酸钠、丙酸钠、污泥水解酸化液六种碳源模拟废水,通过间歇运行方式对不同碳源的反硝化除磷系统的运行状态进行研究.结果六个系统中,淀粉的COD去除率最小,为45%,其余系统相差不大,去除率最大的是污泥水解酸化液,为88%;缺氧结束时系统出水PO_4~(3-)-P质量浓度分别为2.24 mg/L、3.00 mg/L、3.81 mg/L、1.40 mg/L、2.46 mg/L、1.18 mg/L;各系统每克M LSS的亚反硝化速率分别为1.27 mg/(g·h)、1.15 mg/(g·h)、1.58 mg/(g·h)、2.91 mg/(g·h)、2.60 mg/(g·h)、2.03 mg/(g·h).结论碳源种类对双泥生物膜亚硝化反硝化除磷系统有很大影响,淀粉类大分子碳源不利于反硝化除磷,乙酸钠类小分子物质有利于磷的释放和吸收.  相似文献   

8.
硫自养反硝化反应器脱氮特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以硫自养反硝化反应器脱氮为研究体系,对其反硝化特性进行研究。结果表明,反应器完成挂膜后,15天可完成对反应器内硫自养菌的驯化,相比于其他的硫自养反硝化反应器,所用时间较短,进水pH值为8,t(HRT)为4.3h,进水硝酸盐质量浓度为70 mg/L时,脱氮率可稳定在90%以上,反硝化速率达18.5mg/(L·h)(以N元素计);反应器上、中、下部均有脱氮硫杆菌,且中、下部较多。反应器的最佳进水硝酸盐质量浓度为50mg/L,最适温度为30~35℃,最佳进水pH值为7~8,硝酸盐去除率可达90%以上。  相似文献   

9.
沉水植物光合呼吸作用能够造成浅水湖泊溶氧(dissolved oxygen,DO)浓度的昼夜变化,并可能对湖泊氮物质转化和氧化亚氮(N_2O)排放产生影响.研究了短期DO浓度变化对富营养化浅水湖泊沉积物N_2O产生和N物质转化的影响.结果表明,相对于空白对照组(DO浓度为3.0~4.0 mg/L时),当处理组水体DO浓度昼夜波动为2.0~12.0 mg/L时,水体N_2O浓度和沉积物N物质含量均出现显著变化,其中处理组N_2O浓度显著高于空白对照组,而氮气(N_2)浓度则明显降低.此外,处理组水体和沉积物总氮(total nitrogen,TN)和氨氮(NH_4-N)浓度均显著降低,而硝态氮(NO_3-N)浓度则呈现增加趋势.实验结束后,处理组沉积物潜在氨氧化率、潜在亚硝酸氧化率、潜在硝化速率和潜在反硝化速率都显著上升.  相似文献   

10.
反亚硝化脱氮是反硝化过程中的一个重要环节,也是污水短程反硝化脱氮的重要组成部分.本文在亚硝酸氮浓度为30~110 mg.L-1范围内,主要考察了影响反亚硝化速率因素中的pH、NO2--N、MLSS的作用.研究表明,在温度为18℃,pH为7.5时,反亚硝化速率最大;NO2--N浓度为60 mg.L-1时的反亚硝化作用最强;MLSS高则整体反亚硝化脱氮速率快,但MLSS高则单位质量反亚硝化菌的效率低.  相似文献   

11.
同步硝化反硝化脱氮及处理过程中N2O的控制研究   总被引:11,自引:0,他引:11  
由于水体富营养化和温室气体控制的需要 ,使得具有高效率脱氮 ,同时N2 O逸出最少化的水处理技术的研究开发变得十分迫切 .本文报道了采用新型同步硝化反硝化工艺 (SND)的研究成果 .与传统顺序式硝化反硝化 (SQND)技术相比 ,SND工艺的脱氮与SQND的效率相近 ,可随溶解氧浓度降低而提高 ,但N2 O逸出量显著降低 ,且碳氮比的提高可进一步减少N2 O的排放  相似文献   

12.
好氧反硝化菌株X31的反硝化特性   总被引:25,自引:0,他引:25  
对好氧反硝化菌株X31在好氧条件下的反硝化特性进行了研究.结果表明,反硝化主要发生在菌体的对数生长期,氮气是反硝化过程的最终产物.在反硝化过程中,pH值呈逐渐上升趋势,而氧化还原电位(ORP)呈逐渐降低趋势.菌株X31能够以硝酸盐或亚硝酸盐和氧气为电子受体进行协同呼吸,并且亚硝酸盐呼吸要较硝酸盐呼吸更容易进行.硝酸盐呼吸和亚硝酸盐呼吸都具有较高的脱氮效率.和其他已报道的好氧反硝化茵相比,X31菌株有着更高的氧耐受浓度.当培养液中初始的氧化态氮质量浓度为150mg/L左右时,溶解氧值对X31菌株的反硝化效果没有显著的影响.  相似文献   

13.
以筛选分离得到的好氧反硝化菌HG-7为研究对象, 经过16S rRNA同源性分析, 初步鉴定该菌株为假单胞菌属(Pseudomonas sp.)。对菌株HG-7反硝化功能基因的扩增结果表明, 菌体HG-7内存在好氧反硝化功能基因napA和nirK, 证实该细菌为好氧反硝化细菌。对菌株的脱氮特性和影响因素的研究表明, 以硝酸盐氮为氮源时, 菌株的最适碳源为乙酸钠和丁二酸钠, 最佳C/N比为6~10, 最适宜的温度范围为26~30℃。在上述条件下, 菌株HG-7的好氧反硝化活性较高, 48小时内对100 mg/L硝酸盐氮的去除率可达98%, 且在反应过程中亚硝酸盐氮积累量较低。以亚硝酸氮为唯一氮源时, 低浓度条件下可实现100%的氮素去除率; 高浓度条件下, 脱氮速率则受到明显的抑制, 对91.4 mg/L的亚硝酸盐氮氮去除率约为40%。因此, 将该菌株应用于废水的脱氮处理, 可实现氮素的有效去除, 具有潜在的应用价值。  相似文献   

14.
以模拟废水为对象,在传统的流化床反应器内,将活性污泥和经驯化的反硝化污泥按适当比例混合后,用聚乙烯醇(PVA)加适当添加剂将其包埋,并对短程硝化反硝化脱氮进行了研究.结果表明,在进水NH4+-N平均为53.60mg/L,COD为281.19mg/L,HRT12h,调控温度、溶解氧、pH等,出水亚硝化率和TN去除率分别可达95%和85%以上,短程硝化反硝化脱氮较理想.当进水COD含量从150mg/L增加到750mg/L,TN去除率从73.66%提高到96.79%.适合包埋颗粒短程硝化反硝化脱氮的最佳溶解氧浓度约为4.0mg/L.当pH一直维持在8.0左右,温度从30℃降到25℃过程中,短程硝化反硝化并未遭破坏.当温度维持在25℃,pH从8.0降到7.5,连续运行约5个周期后,短程硝化反硝转变为全程的硝化反硝化.  相似文献   

15.
以污水厂初沉池出水作为研究对象,考察了常温(8~20℃)条件下,处理规模为5 m3/h的一体化厌氧/好氧生物反应器同步脱氮除磷的效果.试验中,系统脱氮始终存在同步硝化反硝化现象.通过低氧条件下亚硝酸盐的富集,系统进入稳定脱氮期.在稳定脱氮期,反应器出水亚硝酸盐平均累积率达82.52%,系统脱氮以亚硝酸盐型同步硝化反硝化的方式为主,实现了短程同步脱氮及磷和有机物的协同去除.TN,TP和COD平均去除率分别为77.4%,87.7%和90.4%.在该研究条件下,DO质量浓度的最佳控制范围是(0.25±0.10)mg/L.  相似文献   

16.
以COD/TN为2.7左右的实际生活污水为处理对象,通过调整系统曝气量,研究了DO对多段式生物接触氧化法脱氮除磷系统运行性能的影响。结果表明,设定的5组DO条件下,处理效果与前、后端DO浓度差异有关。当前段DO为3-4mg/L,后段DO为4-5mg/L时,COD、TN的去除率90%、81%,满足GB18918-2002污水排放一级A标准,装置污泥量很少,没有剩余污泥排放,TP去除效果稍差。通过对装置生物多样性和生物膜质量的分析,表明DO浓度的差异性变化,为生物膜上微生物同步硝化反硝化创造了条件。  相似文献   

17.
研究了A2/O与悬浮填料生物膜(SCBP)中试复合工艺的除磷效率,并考察了影响因子COD/TP与DO对除磷的影响。结果表明:总磷平均去除率为82%,达到GB/T18921-2002景观用水水质要求。当硝酸盐含量急剧下降至0.20mg/L以下时,反硝化除磷菌不再以硝酸盐作为电子受体进行聚磷活动,厌氧磷释放的最佳碳磷比为60。添加纳米改性的悬浮填料后,好氧池的溶解氧为2.0mg/L时,出水TP为0.3~0.35mg/L。  相似文献   

18.
采用膜生物反应器对洗浴废水进行处理回用研究,确定该工艺最佳运行参数,并考察其用于洗浴废水回用的可行性。实验结果表明:膜生物反应器最佳运行条件为通量13~15 L/(m2.h),曝气量450~550 L/(m2.h),污泥质量浓度3.00~4.00 g/L;最佳条件下该工艺对洗浴废水的处理效能较高,化学需氧量、总氮、氨氮、总磷、阴离子表面活性剂、生物化学需氧量和浊度的去除率均高于90%,甚至达100%。  相似文献   

19.
依据烟气脱硫脱硝废水的主要特征配制模拟废水,研究不同硝态氮负荷对该废水反硝化过程中C和N的变化规律及脱氮效果的影响.间歇式批次实验结果表明:氮负荷为50~400 mg/L时,经过12 h后硝态氮去除率达到95%以上,反应过程中有10%~20%硝态氮转化为亚硝态氮.随着氮负荷的增加,T OC的消耗量也在增加,但降解率逐渐减小,去除每毫克硝态氮所需TOC依次为5.40、4.03、3.15、2.96、2.88、2.32和1.9 mg . TN的去除包括硝态氮、亚硝态氮和部分有机氮的去除,亚硝态氮完全去除时TN也基本去除.反应结束时,不同氮负荷下所需的△TOC/△TN为1.9~4.0.氮负荷从50 mg/L增加至400 mg/L ,容积反硝化速率由2.73 mg NO-3‐N /(L· h)增加至21.90 mg NO3-‐N /(L · h).△TOC/△TN与容积反硝化速率、氮负荷之间都呈良好的线性关系.  相似文献   

20.
在常温、低氨氮浓度下,通过控制DOC质量浓度在0.5~1.2 mg/L,在SBR反应器中成功实现短程硝化与同时硝化反硝化工艺的耦合;亚硝酸累积率达到78.5%,总氮损失率达到28.1%;研究了有机负荷和pH对耦合工艺的影响,结果表明,有机物负荷增加有利于提高耦合工艺总氮的去除率,负荷从0.11上升到0.47时,TN的去除率从18.0%上升至41.9%;本实验条件下耦合工艺最佳pH在7.6左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号