首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian mitochondrial DNA (mtDNA) is inherited principally down the maternal line, but the mechanisms involved are not fully understood. Females harboring a mixture of mutant and wild-type mtDNA (heteroplasmy) transmit a varying proportion of mutant mtDNA to their offspring. In humans with mtDNA disorders, the proportion of mutated mtDNA inherited from the mother correlates with disease severity. Rapid changes in allele frequency can occur in a single generation. This could be due to a marked reduction in the number of mtDNA molecules being transmitted from mother to offspring (the mitochondrial genetic bottleneck), to the partitioning of mtDNA into homoplasmic segregating units, or to the selection of a group of mtDNA molecules to re-populate the next generation. Here we show that the partitioning of mtDNA molecules into different cells before and after implantation, followed by the segregation of replicating mtDNA between proliferating primordial germ cells, is responsible for the different levels of heteroplasmy seen in the offspring of heteroplasmic female mice.  相似文献   

2.
May-Hegglin anomaly (MHA) is an autosomal dominant macrothrombocytopenia of unclear pathogenesis characterized by thrombocytopenia, giant platelets and leukocyte inclusions. Studies have indicated that platelet structure and function are normal, suggesting a defect in megakaryocyte fragmentation. The disorder has been linked to chromosome 22q12-13. Here we screen a candidate gene in this region, encoding non-muscle myosin heavy chain A (MYH9), for mutations in ten families. In each family, we identified one of three sequence variants within either the -helical coiled coil or the tailpiece domain that co-segregated with disease status. The E1841K mutation was found in 5 families and occurs at a conserved site in the rod domain. This mutation was not found in 40 normal individuals. Four families had a nonsense mutation that resulted in truncation of most of the tailpiece. One family had a T1155I mutation present in an affected mother and daughter, but not in the mother's parents, thus representing a new mutation. Among the 30 affected individuals, 21 unaffected individuals and 13 spouses in the 10 families, there was correlation of a variant of MYH9 with the presence of MHA. The identification of MYH9 as the disease gene for MHA establishes the pathogenesis of the disorder, should provide further insight into the processes of normal platelet formation and may facilitate identification of the genetic basis of related disorders.  相似文献   

3.
Angelman syndrome (AS) may result from either maternally inherited deletions of chromosome 15q11-13 or from paternal uniparental disomy for chromosome 15. This is in contrast to Prader-Willi syndrome (PWS), which is caused by either paternal deletion of this region or maternal disomy for chromosome 15. However, 40% of AS patients inherit an apparently intact copy of chromosome 15 from each parent. We now describe a family in which three sisters have given birth to four AS offspring who have no evidence of deletion or paternal disomy. We show that AS in this family is caused by a mutation in 15q11-13 that results in AS when transmitted from mother to child, but no phenotype when transmitted paternally. These results suggest that the loci responsible for AS and PWS, although closely linked, are distinct.  相似文献   

4.
A T-->G transversion at nt 8993 in mitochondrial DNA of MTATP6 (encoding ATPase 6 of complex V of the respiratory chain) causes impaired mitochondrial ATP synthesis in two related mitochondrial disorders: neuropathy, ataxia and retinitis pigmentosa and maternally inherited Leigh syndrome. To overcome the biochemical defect, we expressed wildtype ATPase 6 protein allotopically from nucleus-transfected constructs encoding an amino-terminal mitochondrial targeting signal appended to a recoded ATPase 6 gene (made compatible with the universal genetic code) that also contained a carboxy-terminal FLAG epitope tag. After transfection of human cells, the precursor polypeptide was expressed, imported into and processed within mitochondria, and incorporated into complex V. Allotopic expression of stably transfected constructs in cytoplasmic hybrids (cybrids) homoplasmic with respect to the 8993T-->G mutation showed a significantly improved recovery after growth in selective medium as well as a significant increase in ATP synthesis. This is the first successful demonstration of allotopic expression of an mtDNA-encoded polypeptide in mammalian cells and could form the basis of a genetic approach to treat a number of human mitochondrial disorders.  相似文献   

5.
Researchers in several laboratories have reported a high frequency of homoplasmic mitochondrial DNA (mtDNA) mutations in human tumors. This observation has been interpreted to reflect a replicative advantage for mutated mtDNA copies, a growth advantage for a cell containing certain mtDNA mutations, and/or tumorigenic properties of mtDNA mutations. We consider another possibility-that the observed homoplasmy arose entirely by chance in tumor progenitor cells, without any physiological advantage or tumorigenic requirement. Through extensive computer modeling, we demonstrate that there is sufficient opportunity for a tumor progenitor cell to achieve homoplasmy through unbiased mtDNA replication and sorting during cell division. To test our model in vivo, we analyzed mtDNA homoplasmy in healthy human epithelial tissues and discovered that the model correctly predicts the considerable observed frequency of homoplasmic cells. Based on the available data on mitochondrial mutant fractions and cell division kinetics, we show that the predicted frequency of homoplasmy in tumor progenitor cells in the absence of selection is similar to the reported frequency of homoplasmic mutations in tumors. Although a role for other mechanisms is not excluded, random processes are sufficient to explain the incidence of homoplasmic mtDNA mutations in human tumors.  相似文献   

6.
Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is widely accepted that a dysregulated immune response against brain resident antigens is central to its yet unknown pathogenesis. Although there is evidence that the development of MS has a genetic component, specific genetic factors are largely unknown. Here we investigated the role of a point mutation in the gene (PTPRC) encoding protein-tyrosine phosphatase, receptor-type C (also known as CD45) in the heterozygous state in the development of MS. The nucleotide transition in exon 4 of the gene locus interferes with mRNA splicing and results in altered expression of CD45 isoforms on immune cells. In three of four independent case-control studies, we demonstrated an association of the mutation with MS. We found the PTPRC mutation to be linked to and associated with the disease in three MS nuclear families. In one additional family, we found the same variant CD45 phenotype, with an as-yet-unknown origin, among the members affected with MS. Our findings suggest an association of the mutation in PTPRC with the development of MS in some families.  相似文献   

7.
8.
9.
Atopic disease, including atopic dermatitis (eczema), allergy and asthma, has increased in frequency in recent decades and now affects approximately 20% of the population in the developed world. Twin and family studies have shown that predisposition to atopic disease is highly heritable. Although most genetic studies have focused on immunological mechanisms, a primary epithelial barrier defect has been anticipated. Filaggrin is a key protein that facilitates terminal differentiation of the epidermis and formation of the skin barrier. Here we show that two independent loss-of-function genetic variants (R510X and 2282del4) in the gene encoding filaggrin (FLG) are very strong predisposing factors for atopic dermatitis. These variants are carried by approximately 9% of people of European origin. These variants also show highly significant association with asthma occurring in the context of atopic dermatitis. This work establishes a key role for impaired skin barrier function in the development of atopic disease.  相似文献   

10.
The study of complex genetic traits in humans is limited by the expense and difficulty of ascertaining populations of sufficient sample size to detect subtle genetic contributions to disease. Here we introduce an application of a somatic cell hybrid construction strategy called conversion that maximizes the genotypic information from each sampled individual. The approach permits direct observation of individual haplotypes, thereby eliminating the need for collecting and genotyping DNA from family members for haplotype-based analyses. We describe experimental data that validate the use of conversion as a whole-genome haplotyping tool and evaluate the theoretical efficiency of using conversion-derived haplotypes instead of conventional genotypes in the context of haplotype-frequency estimation. We show that, particularly when phenotyping is expensive, conversion-based haplotyping can be more efficient and cost-effective than standard genotyping.  相似文献   

11.
Rheumatoid arthritis is a common autoimmune disease with a complex genetic etiology. Here we identify a SNP in the promoter region of FCRL3, a member of the Fc receptor-like family, that is associated with susceptibility to rheumatoid arthritis (odds ratio = 2.15, P = 0.00000085). This polymorphism alters the binding affinity of nuclear factor-kappaB and regulates FCRL3 expression. We observed high FCRL3 expression on B cells and augmented autoantibody production in individuals with the disease-susceptible genotype. We also found associations between the SNP and susceptibility to autoimmune thyroid disease and systemic lupus erythematosus. FCRL3 may therefore have a pivotal role in autoimmunity.  相似文献   

12.
13.
Charcot-Marie-Tooth disease (CMT) is the most common inherited neuromuscular disease and is characterized by considerable clinical and genetic heterogeneity. We previously reported a Russian family with autosomal dominant axonal CMT and assigned the locus underlying the disease (CMT2F; OMIM 606595) to chromosome 7q11-q21 (ref. 2). Here we report a missense mutation in the gene encoding 27-kDa small heat-shock protein B1 (HSPB1, also called HSP27) that segregates in the family with CMT2F. Screening for mutations in HSPB1 in 301 individuals with CMT and 115 individuals with distal hereditary motor neuropathies (distal HMNs) confirmed the previously observed mutation and identified four additional missense mutations. We observed the additional HSPB1 mutations in four families with distal HMN and in one individual with CMT neuropathy. Four mutations are located in the Hsp20-alpha-crystallin domain, and one mutation is in the C-terminal part of the HSP27 protein. Neuronal cells transfected with mutated HSPB1 were less viable than cells expressing the wild-type protein. Cotransfection of neurofilament light chain (NEFL) and mutant HSPB1 resulted in altered neurofilament assembly in cells devoid of cytoplasmic intermediate filaments.  相似文献   

14.
Coronary artery disease and myocardial infarction (MI) are leading causes of death in the western world. Numerous studies have shown that risk factors such as diabetes mellitus, arterial hypertension and hypercholesterolemia contribute to the development of the disease. Although each risk factor by itself is partly under genetic control, a positive family history is an independent predictor, which suggests that there are additional susceptibility genes. We have scanned the whole genome in 513 families to identify chromosomal regions linked to myocardial infarction and related risk factors that are known to be under genetic control. Here we show, by using variance component analysis and incorporating risk factors, that risk of myocardial infarction maps to a single region on chromosome 14 with a significant lod score of 3.9 (pointwise P=0.00015, genome-wide P<0.05), providing evidence of a principal MI locus. To characterize this locus we analyzed each risk factor by itself. Serum concentrations of lipoprotein (a) show linkage to both the apolipoprotein (a) locus (lod score 26.99) and a new locus on chromosome 1 (lod score 3.8). There is suggestive linkage for diabetes mellitus on chromosome 6 (lod score 2.96), for hypertension on chromosomes 1 and 6, for high-density and low-density lipoprotein cholesterol on chromosomes 1 and 17, and for triglyceride concentrations on chromosome 9. Although some of these risk factors overlap with previously identified loci, none overlaps with the newly identified susceptibility locus for myocardial infarction and coronary artery disease.  相似文献   

15.
Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. The multigene family of G protein alpha subunits, which interact with receptors and effectors, exhibit a high level of sequence diversity. In mammals, 15 G alpha subunit genes can be grouped by sequence and functional similarities into four classes. We have determined the murine chromosomal locations of all 15 G alpha subunit genes using an interspecific backcross derived from crosses of C57BL/6J and Mus spretus mice. These data, in combination with mapping studies in humans, have provided insight into the events responsible for generating the genetic diversity found in the mammalian alpha subunit genes and a framework for elucidating the role of the G alpha subunits in disease.  相似文献   

16.
Chan TL  Yuen ST  Kong CK  Chan YW  Chan AS  Ng WF  Tsui WY  Lo MW  Tam WY  Li VS  Leung SY 《Nature genetics》2006,38(10):1178-1183
Epimutations in the germline, such as methylation of the MLH1 gene, may contribute to hereditary cancer syndrome in human, but their transmission to offspring has never been documented. Here we report a family with inheritance, in three successive generations, of germline allele-specific and mosaic hypermethylation of the MSH2 gene, without evidence of DNA mismatch repair gene mutation. Three siblings carrying the germline methylation developed early-onset colorectal or endometrial cancers, all with microsatellite instability and MSH2 protein loss. Clonal bisulfite sequencing and pyrosequencing showed different methylation levels in different somatic tissues, with the highest level recorded in rectal mucosa and colon cancer tissue, and the lowest in blood leukocytes. This mosaic state of germline methylation with different tissue distribution could act as the first hit and provide a mechanism for genetic disease inheritance that may deviate from the mendelian pattern and be overlooked in conventional leukocyte-based genetic diagnosis strategy.  相似文献   

17.
Genetic studies of Hirschsprung disease, a common congenital malformation, have identified eight genes with mutations that can be associated with this condition. Mutations at individual loci are, however, neither necessary nor sufficient to cause clinical disease. We conducted a genome-wide association study in 43 Mennonite family trios using 2,083 microsatellites and single-nucleotide polymorphisms and a new multipoint linkage disequilibrium method that searches for association arising from common ancestry. We identified susceptibility loci at 10q11, 13q22 and 16q23; the gene at 13q22 is EDNRB, encoding a G protein-coupled receptor (GPCR) and the gene at 10q11 is RET, encoding a receptor tyrosine kinase (RTK). Statistically significant joint transmission of RET and EDNRB alleles in affected individuals and non-complementation of aganglionosis in mouse intercrosses between Ret null and the Ednrb hypomorphic piebald allele are suggestive of epistasis between EDNRB and RET. Thus, genetic interaction between mutations in RET and EDNRB is an underlying mechanism for this complex disorder.  相似文献   

18.
A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice   总被引:13,自引:0,他引:13  
The pathophysiologic pathways and clinical expression of mitochondrial DNA (mtDNA) mutations are not well understood. This is mainly the result of the heteroplasmic nature of most pathogenic mtDNA mutations and of the absence of clinically relevant animal models with mtDNA mutations. mtDNA mutations predisposing to hearing impairment in humans are generally homoplasmic, yet some individuals with these mutations have severe hearing loss, whereas their maternal relatives with the identical mtDNA mutation have normal hearing. Epidemiologic, biochemical and genetic data indicate that nuclear genes are often the main determinants of these differences in phenotype. To identify a mouse model for maternally inherited hearing loss, we screened reciprocal backcrosses of three inbred mouse strains, A/J, NOD/LtJ and SKH2/J, with age-related hearing loss (AHL). In the (A/J x CAST/Ei) x A/J backcross, mtDNA derived from the A/J strain exerted a significant detrimental effect on hearing when compared with mtDNA from the CAST/Ei strain. This effect was not seen in the (NOD/LtJ x CAST/Ei) x NOD/LtJ and (SKH2/J x CAST/Ei) x SKH2/J backcrosses. Genotyping revealed that this effect was seen only in mice homozygous for the A/J allele at the Ahl locus on mouse chromosome 10. Sequencing of the mitochondrial genome in the three inbred strains revealed a single nucleotide insertion in the tRNA-Arg gene (mt-Tr) as the probable mediator of the mitochondrial effect. This is the first mouse model with a naturally occurring mtDNA mutation affecting a clinical phenotype, and it provides an experimental model to dissect the pathophysiologic processes connecting mtDNA mutations to hearing loss.  相似文献   

19.
20.
Determination of recombination rates across the human genome has been constrained by the limited resolution and accuracy of existing genetic maps and the draft genome sequence. We have genotyped 5,136 microsatellite markers for 146 families, with a total of 1,257 meiotic events, to build a high-resolution genetic map meant to: (i) improve the genetic order of polymorphic markers; (ii) improve the precision of estimates of genetic distances; (iii) correct portions of the sequence assembly and SNP map of the human genome; and (iv) build a map of recombination rates. Recombination rates are significantly correlated with both cytogenetic structures (staining intensity of G bands) and sequence (GC content, CpG motifs and poly(A)/poly(T) stretches). Maternal and paternal chromosomes show many differences in locations of recombination maxima. We detected systematic differences in recombination rates between mothers and between gametes from the same mother, suggesting that there is some underlying component determined by both genetic and environmental factors that affects maternal recombination rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号