首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
2.
Genome sequencing projects generate a wealth of information; however, the ultimate goal of such projects is to accelerate the identification of the biological function of genes. This creates a need for comprehensive studies to fill the gap between sequence and function. Here we report the results of a functional genomic screen to identify genes required for cell division in Caenorhabditis elegans. We inhibited the expression of approximately 96% of the approximately 2,300 predicted open reading frames on chromosome III using RNA-mediated interference (RNAi). By using an in vivo time-lapse differential interference contrast microscopy assay, we identified 133 genes (approximately 6%) necessary for distinct cellular processes in early embryos. Our results indicate that these genes represent most of the genes on chromosome III that are required for proper cell division in C. elegans embryos. The complete data set, including sample time-lapse recordings, has been deposited in an open access database. We found that approximately 47% of the genes associated with a differential interference contrast phenotype have clear orthologues in other eukaryotes, indicating that this screen provides putative gene functions for other species as well.  相似文献   

3.
The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum.   总被引:11,自引:0,他引:11  
Analysis of Plasmodium falciparum chromosome 3, and comparison with chromosome 2, highlights novel features of chromosome organization and gene structure. The sub-telomeric regions of chromosome 3 show a conserved order of features, including repetitive DNA sequences, members of multigene families involved in pathogenesis and antigenic variation, a number of conserved pseudogenes, and several genes of unknown function. A putative centromere has been identified that has a core region of about 2 kilobases with an extremely high (adenine + thymidine) composition and arrays of tandem repeats. We have predicted 215 protein-coding genes and two transfer RNA genes in the 1,060,106-base-pair chromosome sequence. The predicted protein-coding genes can be divided into three main classes: 52.6% are not spliced, 45.1% have a large exon with short additional 5' or 3' exons, and 2.3% have a multiple exon structure more typical of higher eukaryotes.  相似文献   

4.
Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes   总被引:41,自引:0,他引:41  
Ashrafi K  Chang FY  Watts JL  Fraser AG  Kamath RS  Ahringer J  Ruvkun G 《Nature》2003,421(6920):268-272
Regulation of body fat storage involves signalling between centres that regulate feeding in the brain and sites of fat storage and use in the body. Here we describe an assay for analysing fat storage and mobilization in living Caenorhabditis elegans. By using RNA-mediated interference (RNAi) to disrupt the expression of each of the 16,757 worm genes, we have systematically screened the C. elegans genome for genes necessary for normal fat storage. We identify 305 gene inactivations that cause reduced body fat and 112 gene inactivations that cause increased fat storage. Analysis of the fat-reducing gene inactivations in insulin, serotonin and tubby signalling mutants of C. elegans, which have increased body fat, identifies a core set of fat regulatory genes as well as pathway-specific fat regulators. Many of the newly identified worm fat regulatory genes have mammalian homologues, some of which are known to function in fat regulation. Other C. elegans fat regulatory genes that are conserved across animal phylogeny, but have not previously been implicated in fat storage, may point to ancient and universal features of fat storage regulation, and identify targets for treating obesity and its associated diseases.  相似文献   

5.
The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.  相似文献   

6.
7.
Forward genetic screens in model organisms have provided important insights into numerous aspects of development, physiology and pathology. With the availability of complete genome sequences and the introduction of RNA-mediated gene interference (RNAi), systematic reverse genetic screens are now also possible. Until now, such genome-wide RNAi screens have mostly been restricted to cultured cells and ubiquitous gene inactivation in Caenorhabditis elegans. This powerful approach has not yet been applied in a tissue-specific manner. Here we report the generation and validation of a genome-wide library of Drosophila melanogaster RNAi transgenes, enabling the conditional inactivation of gene function in specific tissues of the intact organism. Our RNAi transgenes consist of short gene fragments cloned as inverted repeats and expressed using the binary GAL4/UAS system. We generated 22,270 transgenic lines, covering 88% of the predicted protein-coding genes in the Drosophila genome. Molecular and phenotypic assays indicate that the majority of these transgenes are functional. Our transgenic RNAi library thus opens up the prospect of systematically analysing gene functions in any tissue and at any stage of the Drosophila lifespan.  相似文献   

8.
The use of comparative genomics to infer genome function relies on the understanding of how different components of the genome change over evolutionary time. The aim of such comparative analysis is to identify conserved, functionally transcribed sequences such as protein-coding genes and non-coding RNA genes, and other functional sequences such as regulatory regions, as well as other genomic features. Here, we have compared the entire human chromosome 21 with syntenic regions of the mouse genome, and have identified a large number of conserved blocks of unknown function. Although previous studies have made similar observations, it is unknown whether these conserved sequences are genes or not. Here we present an extensive experimental and computational analysis of human chromosome 21 in an effort to assign function to sequences conserved between human chromosome 21 (ref. 8) and the syntenic mouse regions. Our data support the presence of a large number of potentially functional non-genic sequences, probably regulatory and structural. The integration of the properties of the conserved components of human chromosome 21 to the rapidly accumulating functional data for this chromosome will improve considerably our understanding of the role of sequence conservation in mammalian genomes.  相似文献   

9.
Eukaryotic cells store neutral lipids in cytoplasmic lipid droplets enclosed in a monolayer of phospholipids and associated proteins. These dynamic organelles serve as the principal reservoirs for storing cellular energy and for the building blocks for membrane lipids. Excessive lipid accumulation in cells is a central feature of obesity, diabetes and atherosclerosis, yet remarkably little is known about lipid-droplet cell biology. Here we show, by means of a genome-wide RNA interference (RNAi) screen in Drosophila S2 cells that about 1.5% of all genes function in lipid-droplet formation and regulation. The phenotypes of the gene knockdowns sorted into five distinct phenotypic classes. Genes encoding enzymes of phospholipid biosynthesis proved to be determinants of lipid-droplet size and number, suggesting that the phospholipid composition of the monolayer profoundly affects droplet morphology and lipid utilization. A subset of the Arf1-COPI vesicular transport proteins also regulated droplet morphology and lipid utilization, thereby identifying a previously unrecognized function for this machinery. These phenotypes are conserved in mammalian cells, suggesting that insights from these studies are likely to be central to our understanding of human diseases involving excessive lipid storage.  相似文献   

10.
RNA interference   总被引:545,自引:0,他引:545  
Hannon GJ 《Nature》2002,418(6894):244-251
  相似文献   

11.
12.
Caenorhabditis elegans has scores of homoeobox-containing genes   总被引:19,自引:0,他引:19  
T R Bürglin  M Finney  A Coulson  G Ruvkun 《Nature》1989,341(6239):239-243
Homoeobox-containing genes control cell identities in particular spatial domains, cell lineages, or cell types during the development of Drosophila and Caenorhabditis elegans, and they probably control similar processes in vertebrates. More than 80 genes with homoeoboxes that have sequence similarities ranging from 25 to 100% have been isolated by genetic means or by DNA hybridization to previously isolated genes. We synthesized 500-2,000-fold degenerate oligonucleotides corresponding to a set of well-conserved eight amino acid sequences from the helix-3 region of the homoeodomain. We screened C. elegans genomic libraries with these probes and identified 49 putative homoeobox-containing loci. DNA sequencing confirmed that eight out of ten selected loci had sequences corresponding to the conserved helix-3 region plus additional flanking sequence similarity. One of these genes contained a sequence corresponding to a complete pou-domain and another was closely related to the homoeobox-containing genes caudal/cdx-1. The putative homoeobox loci were mapped to the physical contig map of C. elegans, allowing the identification of potentially corresponding genes from the correlated genetic map. We estimate that the number of homoeobox-containing genes in C. elegans is at least 60, constituting approximately 1% of the estimated total number of genes.  相似文献   

13.
14.
Kennedy S  Wang D  Ruvkun G 《Nature》2004,427(6975):645-649
In many organisms, introducing double-stranded RNA (dsRNA) causes the degradation of messenger RNA that is homologous to the trigger dsRNA--a process known as RNA interference. The dsRNA is cleaved into short interfering RNAs (siRNAs), which hybridize to homologous mRNAs and induce their degradation. dsRNAs vary in their ability to trigger RNA interference: many mRNA-targeting dsRNAs show weak phenotypes, and nearly all mRNAs of the Caenorhabditis elegans nervous system are refractory to RNA interference. C. elegans eri-1 was identified in a genetic screen for mutants with enhanced sensitivity to dsRNAs. Here we show that eri-1 encodes an evolutionarily conserved protein with domains homologous to nucleic-acid-binding and exonuclease proteins. After exposure to dsRNA or siRNAs, animals with eri-1 mutations accumulate more siRNAs than do wild-type animals. C. elegans ERI-1 and its human orthologue degrade siRNAs in vitro. In the nematode worm, ERI-1 is predominantly cytoplasmic and is expressed most highly in the gonad and a subset of neurons, suggesting that ERI-1 siRNase activity suppresses RNA interference more intensely in these tissues. Thus, ERI-1 is a negative regulator that may normally function to limit the duration, cell-type specificity or endogenous functions of RNA interference.  相似文献   

15.
Small peptides function as key signals in processes, such as plant cell differentiation, organ development and defenses to biotic stresses. A large number of small peptide precursor genes have been predicted from the analysis of the soybean (Glycine max) whole genome DNA sequence. However, most of these genes have unknown characteristics and functions. In this report, we systemically searched for the gene families of small peptide precursors that are up-regulated in soybean nitrogen-fixing root nodules. We found 212 genes (encoding peptides shorter than 150 amino acids) that were up-regulated, and among them, 79 genes belong to 38 multiple-gene families, but the other 133 genes are unique. Twenty-eight of 38 families are conserved in Arabidopsis, but the other 10 only exist in legumes. We also identified 16 out of the 38 members of the wound-induced polypeptide (WIP) gene family to be upregulated in nitrogen-fixing nodules. We further analyzed homologs of WIP genes in Medicago, Lotus, Arabidopsis and Oryza species and found that a few homologous genes from Medicago truncatula and Lotus japonicus were also upregulated in their nodules and some WIP genes were induced by specific fungal pathogens on soybean and rice. Structure prediction indicated that all WIP prepropeptides contain a conserved DUF3774 domain (including two hydrophobic regions) and most of them have an N-terminal signal sequence. Fluorescence microscopy analysis of two WIP prepropeptides fused to GFP revealed that these proteins are located on the plasma membrane of tobacco leaf cells. Interestingly, 34 soybean WIP genes are clustered onto three soybean chromosomes, different from known peptide gene families (such as CLE). Among them, 11 highly identical genes are aligned on the 6th chromosome, 12 on the 12th, and 11 on the 13th chromosomes. Most of WIP genes from the 12th chromosome share the highest identities with their homologs on the 13th chromosome, suggesting that ancestral WIP genes could have originated from the 13th chromosome, then spread onto the 12th chromosome by chromosome homologous recombination; the new WIP genes could have existed in multiple copies by gene duplication which then spread onto the 6th chromosome. In Arabidopsis and Oryza species, half of the WIP genes are also aligned on one chromosome and showed higher identity with those from the soybean 12th and 13th chromosomes, suggesting that WIP genes originated from one common ancestor.  相似文献   

16.
A Palsdottir  S J Cross  J H Edwards  M C Carroll 《Nature》1983,306(5943):615-616
The fourth component of complement (C4) in man, is coded for by two separate but closely linked loci (C4A and C4B) within the major histocompatibility region (MHC), on the short arm of chromosome 6. Like class I and II loci of this region, the C4 genes are highly polymorphic with more than 30 alleles, including null alleles, assigned to the two loci. This extensive polymorphism, based mainly on electrophoretic mobility, provides a useful marker for studies of disease susceptibility. Several disorders, including systemic lupus erythematosus and type I diabetes, show associations with C4 phenotypes. We have used the technique of Southern with a C4 specific probe to examine the genomic DNA of individuals typed for C4 by protein electrophoresis. We have identified 10.7 and 3.8 kilobase (kb) BglII restriction fragments in each of 9 unrelated individuals with a C4A6 allele, and in none of 22 unrelated individuals in whom this allele was not expressed. This clear correlation of restriction fragment length polymorphism with C4 phenotype provides a precise basis for analysis of C4 polymorphism. It is likely to be of value in clinical investigations of autoimmune disease.  相似文献   

17.
D J Hoeppner  M O Hengartner  R Schnabel 《Nature》2001,412(6843):202-206
Genetic studies have identified over a dozen genes that function in programmed cell death (apoptosis) in the nematode Caenorhabditis elegans. Although the ultimate effects on cell survival or engulfment of mutations in each cell death gene have been extensively described, much less is known about how these mutations affect the kinetics of death and engulfment, or the interactions between these two processes. We have used four-dimensional-Nomarski time-lapse video microscopy to follow in detail how cell death genes regulate the extent and kinetics of apoptotic cell death and removal in the early C. elegans embryo. Here we show that blocking engulfment enhances cell survival when cells are subjected to weak pro-apoptotic signals. Thus, genes that mediate corpse removal can also function to actively kill cells.  相似文献   

18.
Lu R  Maduro M  Li F  Li HW  Broitman-Maduro G  Li WX  Ding SW 《Nature》2005,436(7053):1040-1043
The worm Caenorhabditis elegans is a model system for studying many aspects of biology, including host responses to bacterial pathogens, but it is not known to support replication of any virus. Plants and insects encode multiple Dicer enzymes that recognize distinct precursors of small RNAs and may act cooperatively. However, it is not known whether the single Dicer of worms and mammals is able to initiate the small RNA-guided RNA interference (RNAi) antiviral immunity as occurs in plants and insects. Here we show complete replication of the Flock house virus (FHV) bipartite, plus-strand RNA genome in C. elegans. We show that FHV replication in C. elegans triggers potent antiviral silencing that requires RDE-1, an Argonaute protein essential for RNAi mediated by small interfering RNAs (siRNAs) but not by microRNAs. This immunity system is capable of rapid virus clearance in the absence of FHV B2 protein, which acts as a broad-spectrum RNAi inhibitor upstream of rde-1 by targeting the siRNA precursor. This work establishes a C. elegans model for genetic studies of animal virus-host interactions and indicates that mammals might use a siRNA pathway as an antiviral response.  相似文献   

19.
20.
Chen G  Bradford WD  Seidel CW  Li R 《Nature》2012,482(7384):246-250
Aneuploidy--the state of having uneven numbers of chromosomes--is a hallmark of cancer and a feature identified in yeast from diverse habitats. Recent studies have shown that aneuploidy is a form of large-effect mutation that is able to confer adaptive phenotypes under diverse stress conditions. Here we investigate whether pleiotropic stress could induce aneuploidy in budding yeast (Saccharomyces cerevisae). We show that whereas diverse stress conditions can induce an increase in chromosome instability, proteotoxic stress, caused by transient Hsp90 (also known as Hsp82 or Hsc82) inhibition or heat shock, markedly increased chromosome instability to produce a cell population with high karyotype diversity. The induced chromosome instability is linked to an evolutionarily conserved role for the Hsp90 chaperone complex in kinetochore assembly. Continued growth in the presence of an Hsp90 inhibitor resulted in the emergence of drug-resistant colonies with chromosome XV gain. This drug-resistance phenotype is a quantitative trait involving copy number increases of at least two genes located on chromosome XV. Short-term exposure to Hsp90 stress potentiated fast adaptation to unrelated cytotoxic compounds by means of different aneuploid chromosome stoichiometries. These findings demonstrate that aneuploidy is a form of stress-inducible mutation in eukaryotes, capable of fuelling rapid phenotypic evolution and drug resistance, and reveal a new role for Hsp90 in regulating the emergence of adaptive traits under stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号