共查询到19条相似文献,搜索用时 62 毫秒
1.
通过构造结构化函数ψ(x,y),提出一种基于结构化支持向量机(SVM-Struct)的中文句法分析方法.实验结果表明,与经典的概率上下文无关文法(PCFG)相比,文章提出的方法在中文句法分析方面是十分有效的. 相似文献
2.
针对在复杂场景的非结构化道路中,由于众多的环境干扰因素从而不能准确检测车道线的问题,提出了一种基于改进区域生长法和小波变换相结合的非结构化道路检测算法。根据大多数情况下道路区域在车载摄像头的正下前方及道路区域与道路两旁背景灰度值的一定差异,来有效地选取区域生长的种子点及生长原则进行区域生长道路初分割。同时结合基于小波变换的边缘检测来修正由于初分割道路受复杂环境导致道路检测不准确的情况。实验结果表明,该算法能够较准确地检测出受光照等因素影响的道路区域,且具有较高的准确性。 相似文献
3.
基于层次型支持向量机的人脸检测 总被引:25,自引:0,他引:25
复杂背景中的人脸检测可广泛应用于人脸识别、人机交互等方面。但目前大部分人脸检测方法中存在分类器训练困难和检测计算量大等问题。提出了一种基于层次型支持向量机的正面直立人脸检测方法,在这两方面作了改进。这种结构的分类器由一个线性支持向量机组合和一个非线性支持向量机组成,由前者在保证检测率的情况下快速排除掉图像中绝大部分非人脸区域,后者对人脸候选区域进行进一步确认。在卡内基梅隆CMU等数据库上的实验证明了这种方法不仅具有较高的检测率和较低的误检率,而且具有较小的计算量。 相似文献
4.
基于自适应模板的非结构化道路检测 总被引:1,自引:0,他引:1
提出一种基于自适应变形模板的非结构化道路检测算法.新模板的形状随着道路的形状改变而改变,利用新生成的模板预测下一帧图像中可能出现的道路区域和非道路区域,分别计算道路区域和非道路区域的平均向量和协方差以及每一个像素点和平均向量间的Mahalanobis距离;通过中值滤波去掉噪声点,再进行边缘跟踪计算出路边.该算法运算量小,检测速度快,基本满足实时性要求,具有良好的抗阴影的能力. 相似文献
5.
统计学习理论(SLT)着重研究在小样本情况下的统计规律及学习方法性质.基于该理论,Vapnik等人提出了支持向量机(SVM)这一通用学习方法.SVM在最近几年取得了很好的发展,并在模式识别领域表现出优良的性能.本文尝试利用SVM进行掌纹识别.在对一副训练图像进行预处理之后,对其进行傅立叶变换以得到相应特征向量,然后用支持向量机对特征向量进行训练,最后用训练好的支持向量机进行掌纹识别.文中对1Vr方法和1V1方法的实验结果进行了对比和分析.实验结果显示,支持向量机在掌纹识别过程中表现出较好的性能,并且得到了较高的识别率. 相似文献
6.
针对NPSVR训练速度和预测精度问题,提出一种基于L1范数损失的非平行支持向量回归机L1NPSVR模型,用于预测数值输出。L1NPSVR通过求解两个较小规模的凸规划问题,建立一个ε1-不敏感的下界函数和一个ε2-不敏感的上界函数。在L1NPSVR模型中,每个优化问题同时最小化训练样本的L1范数损失和铰链损失,以保证模型的稳定性,减轻噪声和异常值的影响。L1NPSVR通过求解一对更小的优化问题来提高模型的运行效率。仿真结果验证了所提出方法的可行性及有效性。 相似文献
7.
为了从高光谱遥感影像中高精度提取各种线形道路,提出了基于支持向量机(SVM)的道路特征快速提取算法,首先利用PCA对高光谱影像进行合理压缩,由SVM模式识别理论推导出该算法具有快速精确提取道路网信息的能力,针对高光谱遥感影像高信息量和道路网复杂度高的特点,提出基于1Vm(一对多算法)的多种道路SVM一次性高精度提取的多分类策略,在提高精度的同时,兼顾了道路特征识别的效率。研究结果表明:SVM对线状道路模式判别能力比常规方法有更强的优势,对小样本的道路识别效果更加明显,从遥感影像中不仅能准确地辨别出道路的线形特征,还能识别出其材质和类型;该算法能同时识别出多种道路,执行效率更高。 相似文献
8.
支持向量回归机(SVR)和孪生支持向量回归机(TSVR)是机器学习中的常用算法.受TSVR启发,针对SVR训练速度和预测精度问题,提出一种新型非平行平面支持向量回归机(NNHSVR).NNHSVR的优势如下:(1)NNHSVR模型构造的是两个较小规模的二次规划问题,最终求解得到2个非平行平面,训练速度较SVR快;(2)NNHS-VR在目标函数中加入调节参数u,对边界函数进行约束,使得模型对离群点更加鲁棒.人工数据集和UCI数据集上的实验表明:NNHSVR算法不仅有较好的泛化性能,而且训练速度快.将NNHSVR算法应用于传染病预测问题,取得了比传统传染病预测模型BP神经网络更好的效果. 相似文献
9.
基于支持向量机的机场检测算法 总被引:2,自引:0,他引:2
提出了一种新的机场检测算法.该算法通过把机场跑道的几何特征与其所在区域的纹理特征相结合来描述机场特征,其中由灰度的平均值和方差、区域的光滑性、直方图的偏斜度、区域的一致性、图像的随机性、图像的梯度平均和方差等8个特征组成机场的纹理特征向量.先通过直线检测找到机场跑道的候选区域,然后用基于高斯核函数的支持向量机作为分类函数,对候选区域的特征向量进行分类,由此判别机场跑道.实验表明,与传统的仪通过形状判断机场的方法比较,该算法对机场的误检率较低,检测率比刘德红的方法高近10倍,几乎能实时完成一幅图像的检测. 相似文献
10.
基于支持向量机的彩色图像人脸检测方法 总被引:4,自引:0,他引:4
提出了一种利用肤色信息、基于样本学习的彩色图像人脸检测方法。该方法利用两层支持向量机进行人脸检测,用肤色和非肤色样本训练的第一层支持向量机对图像中每个像素进行分类,所有被判断为皮肤点的像素构成了肤色区域;用窗口对肤色区域进行遍历,用人脸和非人脸样本训练的第二层支持向量机判断窗口是否包含人脸模式,并对检测到的人脸区域进行必要的合并。实验结果显示,本文方法对彩色图像中正面人脸的检测率为87.6%。 相似文献
11.
以人脸表情视频序列为研究对象,介绍了人脸表情识别的一般过程,给出了基于SVM的人脸表情识别方法,讨论了面部表情强度度量方法。通过分析人脸表情的变化,在L-K光流算法基础上应用修正的特征点跟踪方法提取面部特征信息,使用SVM建立人脸表情模型和强度模型,进行表情识别,并对高兴表情进行强度等级分类。实验结果证明了提出方法的有效性。 相似文献
12.
基于密度法的模糊支持向量机 总被引:13,自引:0,他引:13
针对支持向量机对训练样本内的噪音和孤立点特别敏感、极大地影响了支持向量机分类性能的弱点,提出了一种基于密度法的模糊支持向量机,在支持向量机中引入样本密度模糊参数,从而减弱了噪音以及孤立点对支持向量机分类的影响.实验结果证明,在抗击孤立点和噪音点的干扰方面,上述方法优于类中心向量方法以及类中心点距离方法,取得了很好的效果.这一方法大大提高了支持向量机分类的泛化能力,从而大大提高了支持向量机的应用范围. 相似文献
13.
14.
云计算框架大大改进了并行算法的实现难度,但是大部分算法有其局限性.介绍了MapReduce(映射化简)的基本实现原理和调度模型的缺陷,提出了基于支持向量机的的MapReduce进化算法,并给出了基本模型及实现.运用Hadoop云计算平台进行了仿真验证,实验结果表明,基于支持向量机的MapReduce计算框架在候选云节点的调度分配的准确性上有明显提高,并且加快了数据迭代的效率. 相似文献
15.
16.
给出了一种基于编码二叉树的支持向量机(SVM,Support Vector Machine)的多类分类算法.首先,定义了一种构造编码二叉树的方法,在此基础上合理的使用每个训练样本对应的编码来对多类样本进行划分,使之转化为两类分类问题.由算法的实现过程可以看出,本算法可以大大减少子分类器的构造个数,从而简化了多类SVM分类算法. 相似文献
17.
支持向量机的参数选择决定了其学习性能和泛化能力,由于在参数的选择范围内可选择的数量是无穷的,在多个参数中盲目搜索最优参数是需要极大的时间代价,并且很难逼近最优。基于此,提出一种基于混沌粒子群的支持向量机参数选择算法。混沌粒子群优化算法是一种全局搜索方法,在选取SVM参数时,不必考虑模型的复杂度和变量维数.仿真表明,混沌粒子群优化算法是选取SVM参数的有效方法,可以取得令人满意的效果。 相似文献
18.
基于支持向量机的增量学习算法 总被引:1,自引:0,他引:1
通过对支持向量机KKT条件和样本间关系的研究,分析了新增样本加入训练集后支持向量的变化情况,提出一种改进的Upper Limiton Increment增量学习算法.该算法按照KKT条件将对应的样本分为3类:位于分类器间隔外,记为RIG;位于分类间隔上,记为MAR;位于分类间隔内,记为ERR.并在每次训练后保存ERR集,将其与下一个增量样本合并进行下一次训练.实验证明了该算法的可行性和有效性. 相似文献
19.
针对基于支持向量机的分类器训练时间过长问题,提出一种并行训练策略.该策略在并行程序设计上采用主从模式,将训练任务划分成若干个子任务,分配到多个从节点上计算,最后由主节点将各从节点上的训练结果收集,生成分类器模型.采用这种算法,使用了多组稀疏型和连续型的数据集,经过在自强3000高性能计算机上测试,实验结果表明该算法不仅能够保证多分类的高准确率,而且缩短了训练时间. 相似文献