首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文针对铅锌冶炼污酸废水除汞实验研究,通过选取实验方法及实验数据比对,采用株冶污酸废水现有的硫化+石灰中和的基本流程,对工艺进行局部改进并优化部分参数后,处理株冶污酸废水可行,处理后上清液总Hg浓度小于0.05mg/L,通过两段处理后,大部分污染因子能达标,实验结果稳定,该工艺对水质变化有比较好的适应性。  相似文献   

2.
高碳石墨生产中产生的酸废水,其中除含有中和过程中未起作用的盐酸外,还含有一定量的氯化铝,氯化铁,它们都是有效的混凝剂,本文提出采用“铝灰酸溶一步法”生产高效无机混凝剂碱式氯化铝,不仅可以回收盐酸,同时其中的氯化铝和氯化铁与可被回收,从而使酸废水得以治理和废物得以利用,达到经济效益和环境效益的统一。  相似文献   

3.
电絮凝法处理合成洗涤剂废水   总被引:1,自引:0,他引:1  
  相似文献   

4.
王春丽 《科技咨询导报》2009,(4):125-125,127
本文针对洗浴废水的特点,研究了由精矿粉和氧化铁磷加工而成的多孔性物质——海绵铁处理洗浴废水中的阴离子表面活性剂(LAS)的去除效果。  相似文献   

5.
以某铅锌冶炼企业的均化池内水、1号和2号回用水为研究对象,采用Factsage 8.0分析废水中Tl的主要价态和存在形态;制备MnO2和Fe3O4@PB吸附剂,研究pH、初始浓度、吸附时间、吸附剂质量和共存离子等因素对模拟水中铊吸附效果的影响,开展吸附剂处理工业含铊废水综合扩大实验。研究结果表明,实际废水中Tl主要以Tl+存在,均化池内水中有少量[TlCl4-];在最佳pH条件下,100μg/L的模拟水中加入质量浓度为0.8 g/L的Fe3O4@PB和MnO2吸附剂,浸出10 min后,溶液中铊的质量浓度分别为3.09μg/L和2.97μg/L;共存离子Na+和Cl-对吸附剂除铊的影响较小;在最佳pH=5的条件下,采用Fe3O4@PB吸附30 min后,均化池内水铊的质量浓度小于2μg/L;在最佳pH条件...  相似文献   

6.
实验室废水的絮凝-活性炭吸附处理   总被引:3,自引:0,他引:3  
通过对处理前后废水中重金属、硫化物、挥发酚、苯胺等污染物测定,研究了两级絮凝-活性炭吸附法对实验室废水的处理效果。结果显示:硫酸亚铁(FeSO4·7H2O)与聚合氯化铝(PAC)结合的二级絮凝方法能有效地降低污水中的重金属和硫化物等其他污染物,二级使用聚合氯化铝(PAC)对一级絮凝中去除效果不好的Cr6 的去除效果显著,去除率达到90%。而活性炭对挥发酚、硫化物和银的去除效果最佳,去除率分别达到98%,70%和95.4%,全部达到国家要求的排放标准,改善了污水的浊度,并有效地降低了色度。在絮凝温度、搅拌、曝气及污水pH值调节范围一定的情况下,各种污染物的去除效果理想,多种污染物的去除率都在90%以上。实验表明:两级絮凝-活性炭法处理实验室废水效果显著,可有效地去除水中的有毒有害物质,降低实验室废水对环境的危害,是快速、低成本、工艺简单的处理实验室废水的有效途径。  相似文献   

7.
海绵铁预处理焦化废水的实验研究   总被引:1,自引:0,他引:1  
设计采用静态和动态实验,研究海绵铁预处理焦化废水。静态实验在海绵铁的粒径、pH值、反应时间、海绵铁的投加量四个方面研究其最佳处理条件,分别为1~2 mm、6min、60min、20g;动态实验模拟实际工程,研究海绵铁在不同水力负荷下对废水中的色度,氨氮,和CODcr的去除率,为实际工程提供设计依据和经验参数。实验结果表明,水力负荷越小,出水水质越好,但工程中应保证水力负荷不低于1m3/m2.d。  相似文献   

8.
电絮凝处理TNT酸性废水的研究   总被引:6,自引:0,他引:6  
研究了处理TNT酸性废水的电絮凝方法,在滞留时间3min,pH值8-9、电流密度105A/m^2的最优条件下,可将废水中硝基苯类的浓度从82.0mg/L降到0.6mg/L,CODcr从394.0mg/L降到98.0mg/L,硝基苯类和CODcr的去除率分别达到99.27%和74.47%,电絮凝方法的运行成本比传统的活性碳吸附法低得多。  相似文献   

9.
絮凝处理染料废水的电解实验研究   总被引:1,自引:1,他引:0  
通过对染料废水的前期絮凝预处理以及利用热分解法和电沉积法制备了钛基二氧化铅电极,并进行了自由基法电解实验.证明利用电解法产生的自由基处理染料废水,可使废水的化学需氧量(COD)以及色度都随着反应的时间增加而大大降低,其降解效率与废水的初始COD、电极间的电压强度、废水pH值和极板间距等条件的变化有着重要的联系,比较了电解自由基法降解废水中各因素对电解实验的影响.  相似文献   

10.
用电絮凝法处理印染废水,考查了反应时间、极板电压、废水pH值和电极间距对印染废水CODcf去除率的影响.通过正交试验,确定了电絮凝法印染废水处理过程的优化条件为:反应时间40min,极板电压35V,废水pH值8,电极间距3cm,CODcr去除率可迭89.65%.  相似文献   

11.
改良微电解法预处理聚酯废水的试验研究   总被引:2,自引:0,他引:2  
以微电解-混凝沉淀法作为某聚酯化工厂难生化废水的预处理手段,处理废水水质完全达到预处理效果.同时针对微电解法应用过程中存在的问题,采用螺旋型铁刨花和活性焦代替铁屑和活性炭,操作方式采用间歇通气流化,有效地解决了反应柱堵塞、铁屑结块问题,节约了运行资本.  相似文献   

12.
絮凝沉降-Fenton氧化-吸附法处理采油污水实验研究   总被引:1,自引:0,他引:1  
我国油田的采油污水绝大部分经处理后用于油田注水 ,但由于种种原因 ,还有一部分采油污水不能回注 .这部分水外排至环境中 ,对环境产生一定的影响 .本文以甘谷驿油矿采油污水为研究对象 ,采用絮凝沉降 -Fenton氧化 -吸附法对该采油污水进行外排处理实验研究 .考察了 pH值、H2 O2 投加量、Fe2 +投加量、氧化时间、吸附时间、活性炭加量对COD去除率的影响 .实验结果表明 ,最佳处理条件为絮凝剂选用聚合硫酸铁 ,沉降 30min ;pH为 3.0~ 4 .0 ,30 %双氧水加量为 8mL/L ,m (Fe2 +)∶m (H2 O)为 4 % ,氧化时间 12 0min ;活性炭加量 4 .0~ 5 .0 g/L ,吸附时间 12 0min .在这种处理条件下 ,可使污水含油量从 93.1mg/L降至 5mg/L以下 ,悬浮物含量从 172mg/L降至 10mg/L以下 ,CODCr值从 2 6 34mg/L降至 10 0mg/L以下 ,达到国家一级排放标准  相似文献   

13.
强化催化铁炭内电解处理高质量浓度焦化废水   总被引:3,自引:0,他引:3  
针对焦化废水污染物质量浓度高、成分复杂、可生化性差的特点,采用催化铁炭内电解(同时曝气进行强化)对高质量浓度焦化废水进行预处理试验,考察pH值、反应时间、铁炭体积比等因素对处理效果的影响,并通过正交试验确定催化铁炭内电解处理焦化废水的最佳条件,对反应机理作初步的探讨.试验结果表明,当进水COD在3 200~3 500 mg/L之间,pH值约为3,铁炭体积比1∶1,反应时间90 min时,COD、酚、硫化物、色度和NH3-N的去除率分别为66%,75%,73%,80%和34%,ρ(BOD5)/ρ(COD)由处理前的0.25提高到0.52,大大提高了废水的可生化性.  相似文献   

14.
对废水通过固定吸附床的过程进行了物料衡算,确定了穿透曲线方程.通过对传质过程的分析,结合实验得出炉渣吸附床吸附厚度、吸附区下移速度及穿透时间等设计、运行参数.该参数符合运行过程,其理论分析为吸附床的设计提供了一定的理论基础.  相似文献   

15.
利用DSD酸生产过程产生的铁泥,研制出既能用作常规冶金原料,又能用于处理DSD酸氧化废水的水处理用海绵铁.研究表明:在配碳量27%、反应温度1160℃、反应时间16min的情况下,以铁泥为原料制备的常规海绵铁的金属化率可达90%以上;用于处理DSD酸氧化废水的海绵铁适宜配碳量为29%,用制备出的海绵铁处理DSD酸氧化废水,在pH值3~5、反应时间40min时,出水的CODCr去除率可达68%、色度的去除率达90%、可生化性指标BOD/COD提高到0.425.海绵铁中所含C,Fe3C和其他一些杂质元素,这些元素能与铁在水中形成无数微小原电池产生大量[H],[OH]和[Fe2 ],从而氧化还原废水中的有机物,达到污染物降解和提高废水可生化性的目的.海绵铁的微孔结构非常发达,使其具有比表面积大、活性高的特点,是一种替代常规铁屑的理想材料.  相似文献   

16.
采用平板式膜生物反应器(MBR)工艺处理城市污水处理厂的出水,考察投加粉末活性炭(PAC)对处理效果、膜污染和污泥特性的影响.结果表明,系统在很低的有机负荷(MLSS可承受的TOC负荷为0.014 kg/(kg.d))下有机物去除率大于60%,NH4 -N去除率大于95%,浊度去除率约为92%,可维持30 d左右.平行实验显示,投加PAC极大地提高了系统对有机物的去除率,而对NH4 -N和浊度的去除无显著影响;投加PAC能有效减缓膜生物反应器中的膜污染,使膜污染缓慢发展阶段的历时时间延长了一倍多,并使膜过滤污泥的凝胶极化阻力和总阻力分别减小40.5%和17.4%;另外投加PAC改变了污泥特性,是使系统性能提高的主要原因.  相似文献   

17.
Low residual-free-oxygen before final de-oxidation was beneficial to improving the cleanness of ultra-low-carbon steel. For ul-tra-low-carbon steel production, the coordinated control of carbon and oxygen is a precondition for achieving low residual oxygen during the Ruhrstahl Heraeus (RH) decarburization process. In this work, we studied the coordinated control of carbon and oxygen for ultra-low-carbon steel during the basic oxygen furnace (BOF) endpoint and RH process using data statistics, multiple linear regressions, and thermodynamics computations. The results showed that the aluminum yield decreased linearly with increasing residual oxygen in liquid steel. When the mass ratio of free oxygen and carbon ([O]/[C]) in liquid steel before RH decarburization was maintained between 1.5 and 2.0 and the carbon range was from 0.030wt%to 0.040wt%, the residual oxygen after RH natural decarburization was low and easily controlled. To satisfy the re-quirement for RH decarburization, the carbon and free oxygen at the BOF endpoint should be controlled to be between 297 × 10?6 and 400 × 10?6 and between 574 × 10?6 and 775 × 10?6, respectively, with a temperature of 1695 to 1715°C and a furnace campaign of 1000 to 5000 heats.  相似文献   

18.
高盐度化学制药废水预处理试验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
采用"蒸馏+铁炭内电解+絮凝"工艺对某制药企业排放的废水进行预处理。经过蒸馏脱盐后,综合废水盐度(质量分数,下同)由7.4%降至0.15%;再采用"铁炭内电解+絮凝"工艺进行处理,内电解试验最佳工艺条件:进水pH值为3.0、铁炭比为4∶1(体积比)、停留时间为6 h,COD去除率达到26.5%;絮凝试验最佳pH值为9.0,COD去除率达到1.5%。废水经过预处理后,COD去除率达到28.0%,出水COD质量浓度(下同)降至20 988 mg/L,ρ(BOD)5/ρ(COD)由0.28提高至0.41。预处理出水厌氧可生化性试验表明,当进水COD质量浓度为9 000 mg/L左右时,容积负荷(COD)为1.0 kg/(m3.d),出水COD质量浓度降低至2 100 mg/L左右,COD去除率达到75.0%。说明该制药废水经过预处理后可生化性显著提高,为后续的生化处理创造了有利条件。  相似文献   

19.
零价铁去除含铀废水中的铀   总被引:1,自引:0,他引:1  
通过序批实验,研究了零价铁(ZVI)对合铀废水中铀的去除效果,考察了零价铁投加量、U初始浓度、溶液pH、温度及反应时间等因素的影响,结果表明ZVI对含铀废水中的U(Ⅵ)有较好的去除效果,零价铁的投加量、溶液的pH和U(Ⅵ)的初始浓度对铀的去除率影响较大,投加量为0.05g·(50mL)^-1,pH=4时U(Ⅵ)的去除效率最佳,能达到98.5%,而温度对其影响则相对较小.SEM和XRD对零价铁表征表明在反应过程中发生了铁表面的腐蚀以及新的晶体的形成,零价铁处理含铀废水的主要机制可能为UO2^2+的还原沉淀.  相似文献   

20.
采用催化型微电解一BAF组合工艺对垃圾场的老龄渗滤液进行深度处理.通过静态正交试验确定废铁屑和焦炭最佳投加体积比为l︰3;调酸最佳反应pH值为3;调氧化剂H2O2和COD的最佳质量比1.5︰1;调碱最佳反应pH值为7.5;微电解最佳反应时间为1.5 h;调氧化剂H2O2后沉淀最佳反应时间为1.5 h;调碱后沉淀最佳反应时间为2.0 h,试验中COD和色度去除率分别高达85%和95%;BOD5/COD从0.03提高到0.35左右,改善其可生化性为后续生化处理创造良好的条件.催化型微电解反应后使用BAF生物法处理,其出水水质达到垃圾渗滤液国家排放标准.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号