首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于三重非线性理论,运用ANSYS Workbench软件,研究O形密封圈沟槽底角对密封性能的影响。在沟槽底角a分别取80°、90°和100°的条件下,仿真分析了介质压力和摩擦系数变化时O形圈的Von Mises应力和接触压力分布情况,以此为O形圈密封性能的判定依据。结果表明,在一定的初始压缩率(ε=15%)和摩擦系数(f=0.1)条件下,沟槽底角不同时O形密封圈的最大Von Mises应力和最大接触压力都随着介质压力的升高而增大,其中a=80°和a=100°时的Von Mises应力变化基本相同,且始终大于a=90°时的对应值;与其他两种沟槽底角相比,a=100°时O形圈主密封面上的最大接触压力较大,密封性能更好;在一定介质压力下,沟槽底角不同时O形密封圈在3个密封面上的最大接触压力都随着摩擦系数的增大而先降后升,但始终大于介质压力,从而可以确保其密封性能良好。  相似文献   

2.
采用有限元分析软件ANSYS建立干气密封补偿环O形橡胶密封圈二维轴对称模型,对其在不同压缩率与介质压力下的变形、Von Mises应力及密封面处接触压力、接触摩擦应力分布规律进行探讨,确定O性橡胶密封圈易失效位置;分析压缩率和介质压力对其最大Von Mises应力、最大接触压力、最大接触摩擦应力的影响.分析结果表明:O形圈密封最大Von Mises应力、密封面最大接触压力、最大接触摩擦应力随介质压力的增大而增大,在中低压下提高O形圈的压缩率既能提高密封圈的密封性能,也不影响补偿环的追随性.为干气密封补偿环上的O形密封圈结构设计及选型提供参考.  相似文献   

3.
为测量O形密封圈应用在负压油介质环境中的密封泄漏率,构建了一套求解O形密封圈泄漏率的数值仿真算法,并辅以实验进行验证。利用真实表面形貌进行分区处理用于匹配接触压力分布,进而利用接触状态矩阵生成泄漏通道来模拟真实泄漏状况,通过观察泄漏通道的有无来判定密封是否泄漏,同时对平行平板泄漏模型进行改进使其适用于不同通道截面形状的泄漏率计算。对不同油压下的O形圈密封泄漏率进行计算,结果表明:当流体介质压力为0.07 MPa时,仿真所得密封泄漏率为1.717×10-12 m3/s;当介质压力增大至0.09 MPa时,仿真所得密封泄漏率下降为1.525×10-12 m3/s。比较不同介质压力下的接触应力分布,结果表明:随流体介质压力增加,密封接触区域接触应力分布增大,形成贯穿密封接触区域的泄漏通道范围减小,泄漏率减小。为验证仿真结果的合理性,将仿真结果与实验结果进行对比,结果表明:两者相对误差在10%左右,实验结果与仿真结果相符程度较好。  相似文献   

4.
利用有限元软件ANSYS对固体火箭发动机的O形橡胶密封圈进行了有限元仿真分析。探讨了不同工作压力下O形密封圈和挡圈结构的Von Mises应力分布,结果表明:随着工作压力的增加,密封圈和挡圈的Mises应力不断增加,应力峰区也在相应发生变化;增加挡圈结构可以有效防止密封圈挤入密封间隙中;增加挡圈结构后随着工作压力的增加密封圈上的应力增加比较平缓,应力峰值也集中于密封圈与挡圈接触区域。  相似文献   

5.
利用Workbench软件模拟不同压缩率下静水压力对O形圈变形、范·米塞斯应力和接触压力的影响,得到其间的对应关系.计算表明,静水压力对密封圈变形的影响随着压缩率的增大而减小;压缩率较小时,静水压力的增加会引发挤入现象,从而使范·米塞斯应力急剧增大,导致密封圈破坏,故水深较大时,需较大的压缩率或添加挡圈;在不同的压缩率下,接触压力随静水压力的增加而增大,最大接触压力始终大于静水压力,可保证其正常的密封性能.计算结果可为完善水下滑翔器密封结构的设计提供参考.  相似文献   

6.
高压大流量水阀U形密封圈失效机理   总被引:1,自引:0,他引:1  
以高压大流量水阀的U形橡胶密封圈为对象进行受力分析;选取Mooney-Rivlin模型表征橡胶材料,基于ANSYS/LS-DYNA软件实现阀杆往复密封结构的三维非线性接触动力学仿真,得到介质压力、阀杆运动速度和方向、表面摩擦因数以及阀杆径向受力等因素对密封圈应力状况的影响规律,确定U形橡胶密封圈失效的边界条件.实验结果表明:U形密封圈的沟槽、内唇口及底孔边缘是最大应力发生的主要部位,静态下密封圈最大应力比介质压力高8~10 MPa,阀杆正向运动时密封圈最大应力受摩擦因数的影响明显但处于安全范围,阀杆反向运动时密封圈最大应力主要受滑动速度影响,阀杆摆动时最大应力随径向力成近似正比增大.仿真结果与实际失效特征吻合.  相似文献   

7.
高勇  谭嘎子  吴霞  张智芳  艾和 《河南科学》2019,37(5):829-834
借助ANSYS Workbench有限元软件对带金属O形环法兰密封结构进行三维有限元分析,研究预紧工况和操作工况时法兰接触面处的接触压力及应力分布规律.结果表明:随着螺栓预紧力的增加,最大接触压力及最大应力值均增加,最小接触压力减小;操作工况时,随着流体内压的增大,最小应力值基本未发生变化,最大接触压力及最大应力值均减小,且最大接触压力均大于液体内压.  相似文献   

8.
针对深海压力补偿电机旋转轴用O型橡胶密封圈,根据超弹性体非线性本构理论和接触问题的有限元分析方法,利用ANSYS软件对O型密封圈在不同初始压缩率、不同介质压差情况下的受力情况进行了分析研究,得到相应情况下的Von Mises应力云图及接触压力云图.结果表明:密封圈在压缩安装之后,应力集中在密封圈中部靠近轴和密封槽的地方,最大接触压力位于密封圈与轴及密封沟槽相接触发生挤压的部位,其大小与其初始压缩率及密封压差有关,初始压缩率越大,最大接触压力越大;密封压差越大,最大接触压力越大;在不同的环境压力下,压力补偿电机用O型密封圈的最大接触压力值始终大于其工作压力,保证了密封性能.  相似文献   

9.
为厘清迷宫密封内摩擦损失的影响因素并建立摩擦系数预测模型,基于Vannini等搭建的迷宫密封实验装置,以超临界二氧化碳为工质,采用数值方法,探究了雷诺数、进出口压比以及间隙半径比对摩擦系数和泄漏特性的影响关系。结果表明:摩擦系数随雷诺数的增加而减小,随进出口压比的增加基本不变。泄漏量在雷诺数小于104时基本不变,但在大于104时随雷诺数的增大而减小,且泄漏量随进出口压比增大而增大。在不同工况条件下,摩擦系数和泄漏量随间隙半径比的增加而线性增大,但摩擦系数的斜率基本不变,泄漏量的斜率随进出口压比的增大而增大。当雷诺数较高、压比较低时,在密封的入口区域会存在尺寸较大的涡,这有利于泄漏量降低,但此时泄漏模型的预测精度有少许降低。当间隙半径比较小时,摩擦损失主要源于密封间隙内的流动;当间隙半径比较大时,流体与壁面的相互作用是摩擦损失产生的主要原因。最后,基于数值计算结果,提出了摩擦系数预测模型,并验证了该模型预测精度。研究结果将为提高超临界二氧化碳迷宫密封及透平机械的设计水平提供参考。  相似文献   

10.
针对钳盘式制动器制动活塞采用传统的O形橡胶密封圈容易存在局部变形、弹性不足致使密封失效等问题,为了提高制动活塞的密封性能设计了一种梅花形密封圈。利用Ansys Workbench软件建立了梅花形密封圈有限元模型,对其进行了热—结构耦合场的有限元分析,并与传统的O形密封圈进行了对比。结果表明:梅花形密封圈的Von·Mises应力和接触应力随着摩擦因数增大而缓慢减小,并且随着介质压力增大而增大,同时,其特殊的截面结构使得Von·Mises应力随着预压缩量的增大而减小;相比O形密封圈,梅花形密封圈的最大Von·Mises减小了10.39%,最大接触应力减小了10.29%,温度场的最高温度降低了28.3%。梅花形密封圈应力变化波动较小,可避免应力集中,其密封性能优于O形密封圈,使用寿命也较长。  相似文献   

11.
为研究密封副处弧面半径大小对密封圈密封性能的影响,通过ANSYS有限元软件数值仿真方法研究了氢化丁腈橡胶和三元乙丙橡胶两种材料组成的C形组合密封圈.介绍了两种材料的非线性以及ANSYS中描述这类材料特性的Mooney-Rivlin模型,然后简述了有限元模型的建立、接触对以及载荷的设置.根据仿真得出的云图和数据,分别从Von Mises应力、剪切应力和接触压力三个方面来考察密封副处的弧面半径对C形组合密封圈密封性能的影响及密封圈能否满足工作要求.结果表明:在不同弧面半径的参数下,密封圈都可以达到密封效果;在弧面半径较大时,由于Von Mises应力以及剪切应力都较大,增加了密封失效可能性;在弧面半径较小时,密封副处接触压力比较大,增大了密封圈的磨损率,减短其使用寿命.得出当密封弧面半径选择13 mm时,最大Von Mises应力和剪切应力比较小,密封副处的接触压力适中,此值较为合理.  相似文献   

12.
运用Ansys软件对橡胶密封圈进行瞬态动力学分析,研究橡胶材料的黏弹性对橡胶密封圈密封性能的影响。利用APDL参数化语言施加位移载荷,模拟橡胶密封结构在常温下的压缩追随性能,并在此基础上研究了橡胶O形圈的截面直径、间隙张开量、间隙张开时间、压缩率和压力对密封圈密封性能的影响。通过观察O形圈上表面的接触压力随时间的变化,探索在考虑振动工况和材料黏弹性的情况下O形密封圈的设计依据。研究结果表明,密封圈截面直径越大,其回弹时间越长,回弹量越小,压缩率、内压及密封面接触压力越大,追随间隙波动能力和密封性能越好。  相似文献   

13.
针对深海装备在深海高压环境下安全稳定运行的需要,基于非线性有限元接触理论,利用有限元分析软件ABAQUS建立组合密封结构的二维轴对称有限元模型,分析了不同滑环槽形对O形圈和滑环的最大Von Mises应力与接触应力的影响.结果表明:在不同的滑环截面形状下,O形圈的最大Von Mises应力位于滑环与沟槽之间的间隙处,且当滑环截面为矩形槽时,O形圈的最大Von Mises应力值相对比较小,同时不同滑环槽形对O形圈接触应力的影响非常小.相比较于其他滑环截面形状,滑环截面为矩形槽时所受的最大Von Mises应力与接触应力主要集中在滑环的第一个槽形口处,接触压力分布比较均匀,且接触压力变化曲线呈"三角形"分布,满足密封理论要求,有利于提高组合密封结构的密封性能,在高压环境下选用滑环截面形状为矩形槽时密封效果会更好.  相似文献   

14.
采用含高阶项的Mooney-Rivlin本构模型对机械密封用O形丁腈橡胶圈进行了轴对称有限元分析,重点考察了位移幅值、介质压力、压缩率及摩擦系数对其微动特性的影响.结果表明:随着位移幅值的增加,O形圈在微动界面上可呈现黏着、混合黏滑和完全滑移3种不同的接触状态;介质压力、压缩率及摩擦系数对O形圈的微动运行行为有重要影响;混合黏滑状态下O形圈密封界面摩擦力的显著波动会影响浮动环的浮动性;滑移状态下O形圈伴随着较高的Von Mises应力易导致其发生剪切破坏、表面磨损加剧;而在黏着状态下O形圈的综合性能最佳.因此,应避免O形圈运行于混合黏滑状态,压缩率取10%左右,并降低摩擦系数,以减缓其表面磨损和剪切破坏并满足补偿环浮动性和追随性.  相似文献   

15.
针对天然气输送管线过滤器锁环式快开盲板密封应用,提出一种新型浮动式无骨架鞍形橡胶密封圈。采用ANSYS Workbench有限元分析软件进行参数化仿真分析,得到橡胶密封圈应力分布、变形情况和密封接触处压力分布,并重点分析了装配间隙处局部橡胶挤出状态。结果表明改进后密封圈的密封性能良好,橡胶变形及局部挤出现象得以改善。该型密封圈与原金属弹簧嵌入式鞍形密封圈相比,具有结构简单、制造经济、使用寿命长等特点。  相似文献   

16.
水平应力与裂隙密度对顶板安全厚度的影响   总被引:2,自引:0,他引:2  
将地下空区顶板视为梁模型,采用结构稳定理论,建立水平应力与地下空区项板安全厚度之间的关系;以裂隙张量为基础,将岩体中的裂隙看作初始损伤,对含随机分布裂隙的顶板岩体进行分析,推求裂隙岩体的等效变形模量和等效泊松比,从而建立地下空区项板厚度与岩体裂隙密度之间的关系,并探讨水平应力与岩体裂隙密度对地下空区顶板厚度的影响.研究结果表明:地下空区顶板厚度与水平应力及岩体裂隙密度具有较大的相关性,最小安全厚度随着水平应力的增大而增大,当水平应力由0 MPa增加到15 MPa时,对安全厚度的影响较大;当水平应力大于15 MPa时,随着水平应力的增大,安全厚度的增加幅度较小;最小安全厚度随着岩体裂隙密度的增大而增大,安全厚度与裂隙密度近似呈直线关系.  相似文献   

17.
基于弹塑性力学理论,采用有限元分析方法,建立了岩土坍塌作用下埋地集输管道分析模型,研究了岩石坍塌作用下不同因素对埋地集输管道应力影响规律.结果表明:冲击载荷随石块边长的增加呈指数形式上升,正方体边长改变1.4 m时,冲击载荷可改变22.4 MPa.运行压力、温度、管道铺设坡度对管道壁面应力影响较小,而冲击载荷、腐蚀是埋地集输管道安全的主要影响因素.当冲击载荷大于10.5 MPa时,管道进入塑性变形区.岩石坍塌冲击载荷较大时,管道壁面最大等效应力随着管道径厚比的增加而减少.当径厚比改变了3.8,管道壁面最大等效应力可减小44 MPa;当岩石坍塌冲击载荷较小时,管道壁面最大等效应力出现极小值点.  相似文献   

18.
根据偏摆角圆周密封分析,建立受力模型和有限元分析模型.通过结构分析与热-结构耦合分析,得到了不同偏摆角下主、辅助密封面应力和变形分布规律及泄漏间隙和泄漏量变化规律.主、辅助密封面应力和变形分布均匀,最大应力和最大变形位于凸舌处,主密封面最大变形大于辅助密封面,最大应力和最大变形随偏摆角增加而增大.热-结构耦合分析应力和变形与结构分析分布规律基本一致,但均大于结构分析.主密封面间隙从轴承腔向气腔增大,辅助密封面间隙从中心向两端增大,接头处间隙最大.泄漏量随偏摆角增加而增大.  相似文献   

19.
采用ABAQUS软件建立基于热力耦合的有限元模型,对22MnB5高强板不同工艺条件下的成形过程进行模拟分析,探究摩擦系数、模具间隙和成形温度等工艺参数对热成形时的减薄率和应力分布的影响.结果表明:成形温度的升高会改善材料的塑性,导致变形抗力减小,危险点应力减小,减薄率增大.随模具间隙增加,危险点应力、减薄率都呈减小趋势.摩擦系数的增大导致材料流动阻力增大,减薄率增加,材料容易被拉裂.研究表明,摩擦系数0.1、模具间隙2.2mm、成形温度800℃为合适的工艺参数.  相似文献   

20.
采用非线性有限元软件,对油井套管橡胶密封的应力进行了分析,计算出橡胶密封装置的应力分布。分别考虑了载荷、摩擦系数、密封间隙和橡胶密封筒高度对应力分布的影响。分析表明,载荷、密封间隙、橡胶密封筒高度对应力最大值有影响,而摩擦系数影响很小。可以根据这些计算结果,对实际设计的橡胶密封筒进行优化设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号