首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
研究了由压电陶瓷圆盘,金属环,压电陶瓷环组成的圆盘形压电陶瓷复合变压器。推导了这种压电变压器的等效电路,输入阻抗,共振、反共振频率方程和电压增益方程。分析计算了压电变压器尺寸变化对频率、有效机电耦合系数的影响。研究了负载变化对压电变压器频率、有效机电耦合系数的影响,探讨了电压增益与负载的关系。研究表明,变压器随壁厚比的升高共振和反共振频率皆升高,有效机电耦合系数降低;随负载的升高,共振、反共振频率及电压增益升高,有效机电耦合系数降低。  相似文献   

2.
提出了一种新型的径向振动压电变压器,该变压器由两个径向极化的压电圆环与一个金属圆环在径向复合而成。基于径向极化压电圆环与金属圆环的机电等效电路,利用解析法得出此类压电变压器的机电等效电路,借助等效电路推出了压电变压器的共振、反共振频率方程及电压增益方程。利用数值法研究了压电变压器共振、反共振频率及有效机电耦合系数与金属圆环尺寸的关系,探讨了压电变压器共振频率及电压增益和负载阻抗的依赖关系。最后,用阻抗分析仪测试了压电陶瓷复合变压器的基频频率,实验测试结果与理论结果有很好的一致性。  相似文献   

3.
夹心式功率超声压电换能器负载特性研究   总被引:6,自引:3,他引:6  
在等效电路理论的基础上,对大功率夹心式压电超声换能器的负载特性进行了研究,重点讨论了两种常用的负载,即超声清洗等液体处理技术中的液体负载以及用于超声加工和超声钻孔等技术中的固体负载,探讨了负载对换能器共振频率的影响。结果表明,对于液体介质,当液面的高度在一定范围内增大时,换能器的共振频率会降低,当液体负载横截面积增大时,液面高度对换能器共振频率的影响增大,对于固体负载,当超声加工工具的长度减小时,换能器振动系统的共振频率升高,当超声加工工具的横截面积较小时,工具长度对换能器系统频率的影响很小。  相似文献   

4.
采用共沉淀法制备了纳米Pb(ZrxTi1-x)O3(PZT)粉体,并经过适量的Fe3 ,Mn2 ,Bi3 ,Nb5 等离子掺杂后,制备了具有单一钙钛矿晶结构的PZT αPbMn1/3Nb2/3O3 βBiFeO3压电陶瓷粉体。通过低温烧结制备了压电陶瓷,并研制了一种Rosen压电陶瓷变压器。用扫描电镜对陶瓷微观结构进行了研究,并测量了压电变压器的电学性能。结果表明,用纳米粉体Pb(ZrxTi1-x)O3制备的四元系压电陶瓷结构致密,晶粒生长正常,晶粒尺寸约为4~6μm。基于此材料制作的Rosen型压电变压器在负载阻抗为20 MΩ,输入电压为5 V条件下升压比高达420倍以上。  相似文献   

5.
本文介绍一个利用压电陶瓷变压器的高压稳压电源,电源的输出电压为2000伏。利用串联稳压系统,并采取了使陶瓷变压器的工作频率跟踪谐振频率以及温度补偿等措施,使电源的稳定性有大幅度的提高,该电源的主要特点是:在宽温度范围内,具有较高的稳定度,在-50℃~+65℃的范围内,输出电压的相对漂移<0.3%,当电源的输入电压改变±10%时,输出电压的相对变化<0.3%;电源具有负阻特性,空载输出电压低于有载输出电压;体积小、重量轻,整机重量<1Kg。  相似文献   

6.
研究并设计了类1-3-2型压电复合材料与基于此材料的夹心式换能器,分析了类1-3-2型压电复合材料的频率特性和夹心式换能器的频率方程。利用切割法制作类1-3-2型压电复合材料,并采用该材料制作了夹心式换能器并进行了实验验证。研究表明:该型换能器可实现拓宽夹心式换能器工作频带,有效抑制杂散模态以及改善位移分布,可应用于大功率超声与水下大功率发射器。  相似文献   

7.
一种新型压电陶瓷变压器驱动电路的研究   总被引:5,自引:3,他引:5  
  相似文献   

8.
压电陶瓷变压器的激光钎焊   总被引:4,自引:0,他引:4  
针对压电陶瓷变压器 ( PECT)侧电极的连接问题 ,提出了激光钎焊的工艺方法 ,采用金属网辅助钎膏钎接片单元工艺 ,很好地解决了多层元件不同性质分割区域表面的连接问题 ,激光钎焊接头全连通率高 ,热影响小 ,质量好。建立了三维多层异质复合结构 PECT的激光钎焊温度场数学模型 ,通过数值模拟的方法计算了 PECT激光钎焊温度场的分布情况 ,取得了比较理想的结果 ,激光钎焊工艺及温度场的分析研究 ,将会推动压电陶瓷变压器的实用化进程 ,对类似问题的解决也会有一定的借鉴意义  相似文献   

9.
在均匀截面细棒扭转及弯曲振动理论的基础上,研究了一种夹心式扭转-弯曲复合模式压电超声换能器.该换能器由均匀截面金属细棒及两组极化方向不同的压电陶瓷元件组成.文中导出了换能器的共振频率设计方程,并从理论及实验上实现了同一换能器中扭转及弯曲振动的同频共振.实验表明,换能器的扭转振动共振频率与弯曲振动共振频率基本一致,实测值与设计值基本符合.  相似文献   

10.
夹心式扭转—弯曲复合模式压电超声换能器的研究   总被引:3,自引:0,他引:3  
在均匀截面细棒扭转及弯曲振动理论的基础上,研究了一种夹心式扭转-弯曲复合模式压电超声换能器。  相似文献   

11.
研制了一种新型径向复合压电陶瓷超声换能器,并对其径向振动特性进行了理论及实验研究.该换能器由一个厚度方向极化的压电陶瓷薄圆环及一个金属圆环组成.对压电陶瓷圆环和金属圆环的径向振动分别进行了分析,得到了各自机电等效电路.在此基础上,利用换能器径向力及径向振动速度的连续条件,得出了压电陶瓷径向复合超声换能器机电等效电路及其共振频率方程.分析了换能器的共振及反共振频率、有效机电耦合系数与其几何尺寸之间的关系.结果表明,在换能器压电陶瓷圆环内外半径保持一定情况下,换能器半径比增大时,共振及反共振频率随之增大.对于换能器第一阶径向振动,其有效机电耦合系数随半径比增大单调增大,而第二阶径向振动有效机电耦合系数随半径比增大单调减小.  相似文献   

12.
研究了一种新型径向夹心式复合换能器的径向振动。该换能器由径向极化的压电陶瓷圆环及内外金属环构成。获得了压电环及金属环的机电等效电路,根据机械边界条件,得到换能器的三端机电等效电路,并求得换能器的频率方程。得到共振频率反共振频率以及有等效机电耦合系数与复合换能器几何尺寸间的理论关系。同时用有限元方法对换能器的径向振动进行模拟仿真,并实验测量了换能器的共振与反共振频率。结果表明,理论计算、模拟仿真以及实验测量结果符合较好。  相似文献   

13.
对压电陶瓷变压器的理论研究及应用现状作了较为全面的探讨和评述,并分析了存在的问题和今后发展方向.压电陶瓷变压器是一种新型固态电子器件,它具有结构及工艺制作简单、体积小、重量轻、无电磁噪声、无电磁式绕组、不可燃烧、完整性好以及大规模生产成本可以大幅度降低等优点.目前压电陶瓷变压器已在液晶显示器中的冷阴极管、霓虹灯管、激光管和X光管、高压静电喷涂、高压静电植绒和雷达显示管等方面得到广泛应用.  相似文献   

14.
提出一种新型径向复合压电陶瓷变压器,并应用等效电路方法对阶梯金属圆环和厚度极化的压电振子的径向振动,以及阶梯厚度比与最大电压增益及机电耦合系数的关系进行分析.得到的此变压器的等效电路,推导出输入阻抗、共振频率、反共振频率、电压增益和功率效率的解析解,并将计算所得的共振频率、反共振频率与ANSYS模拟结果进行比较验证.结果表明:变压器在共振频率驱动下获得最大电压增益,在共振频率和反共振频率下获得最大功率效率;电压增益和功率效率在固定频率下,都存在着最佳负载.  相似文献   

15.
基于一维压电弹性理论建立叠加式压电陶瓷智能骨料的理论模型,并在此基础上采用数值分析方法研究压电陶瓷电学连接方式和叠加数量以及单片压电陶瓷厚度、水泥保护层厚度等关键结构参数对智能骨料的谐振频率、机电耦合系数、智能骨料激发器输出位移及传感器输出功率的影响。结果表明,智能骨料的谐振频率和反谐振频率随压电陶瓷的厚度和叠加片数、保护层厚度的增加而不断减小,且压电陶瓷串联叠加时谐振频率与反谐振频率之间的差值大于并联叠加时的对应差值;智能骨料的机电耦合系数随压电陶瓷的厚度和叠加片数的增加而增大;智能骨料激发器的输出位移与智能骨料传感器的输出功率随压电陶瓷叠加片数的增多而加大,且压电陶瓷串联叠加时的激发器输出位移和传感器输出功率均大于并联叠加时的输出值。  相似文献   

16.
17.
为了获得高压输出,常采用线绕变压器升压,由于升压比决定于变压器的次级线圈匝数与初级线圈的匝数比.因此,要获得10KV以上的高压,只有增加次级线圈的匝数.这样不仅绕制困难,也增加铜耗.同时,提高变压器的绝缘程度、避免高压击穿和变压器散热  相似文献   

18.
介绍一种新型的压电陶瓷涡街流量计,该流量计采用BST压电陶瓷元件来检测旋涡释放频率,使该流量计能在高温工况下工作,一年多的工业现场运行试验结果表明,新研制的涡街流量计可靠性高、稳定性好,在400℃高温和10MPa高压下能长期连续正常运行。  相似文献   

19.
将迈克尔逊干涉仪的可移动平面镜改装为带有压电陶瓷的平面镜,改变压电陶瓷的驱动电压,压电陶瓷就会发生微小形变,迈克尔逊干涉仪两臂的光程差发生改变,导致干涉图样变化。运用MATLAB软件对实验数据进行模拟,验证了电陶瓷的非线性特性。本实验操作简单,可实用性强。  相似文献   

20.
一、引言压电陶瓷变压器因具有比线绕度变压器体积小,重量轻,绝缘性能好等优点。又经过不断改进,性能不断提高,已被应用在诸如静电除尘器、离子发生器、静电印刷及雷达电视等方面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号