共查询到20条相似文献,搜索用时 78 毫秒
1.
神经网络在图像分割时需要计算大量的训练数据,计算速度跟不上实时数据处理,造成分割图像的质量较差的问题,分析了传统优化BP神经网络算法中存在的问题,提出了一种将增加动量项与自适应调整学习率相结合的优化BP神经网络图像分割方法,该方法可以加快迭代速度,还可以跳出过早局部极小值的局面。最后对经典图像进行分割实验验证,取得较好的效果,同时该算法还有效的缩短了图像分割的时间。 相似文献
2.
基于BP神经网络的玉米单倍体种子图像分割 总被引:2,自引:0,他引:2
以单倍体育种产生的经遗传标记后的玉米品种1050-37为研究对象,研究种子图像的颜色模式类别,将单个玉米种子划分为紫色标记区域、黄色区域和白色区域进行分析.通过分析图像在归一化rgb,HSV模型下的不同颜色特征,选取其中7个作为输入特征参数,构建了一种3层BP神经网络模型,从而实现玉米单倍体种子图像的有效分割.试验表明... 相似文献
3.
阈值法是图像分割中常用的有效分割技术之一,但是阈值的选取对分割结果影响很大,特别是对于生物医学图像,分割结果往往不能满足要求.本文将SOM神经网络应用到图像分割中,利用其自组织学习的能力自动获取阈值,其结果不仅优于传统阈值法,而且也优于竞争型神经网络. 相似文献
4.
用BP网络进行彩色图像分割和边缘检测 总被引:10,自引:0,他引:10
采用BP网络模型,研究了彩色图像分割和边缘检测的神经网络方法。选取训练样本图像,并分别以区域增长分割法和Sobel边缘检测方法所得结果为导师信号,将图像的特征向量采用BP算法进行训练,然后对实测图像进行分割和边缘检测。与采用区域增长法所得分割结果和采用Sobel边缘检测方法所得边缘检测结果进行比较,BP网络方法能取得同样较好的效果。 相似文献
5.
海马子区体积很小且结构复杂,传统分割方法无法达到理想分割效果,为此引入生成对抗网络模型用于海马子区图像分割.该方法构建一个生成对抗网络模型,通过构建生成网络和对抗网络并对其进行交替对抗训练实现对脑部海马子区图像的像素级精确分割.实验选取美国旧金山CIND中心的32位实验者的脑部MRI图像进行海马子区分割测试,在定性和定量方面分别对比了所提方法基于稀疏表示与字典学习方法和传统CNN的分割结果.实验结果表明,该方法优于基于稀疏表示与字典学习和CNN方法,海马子区分割准确率有较大提升.该方法提升了海马子区的分割准确率,可用于大脑核磁图像中海马子区的分割,为诸多神经退行性疾病的临床诊断与治疗提供依据. 相似文献
6.
针对染色体识别的难题,提出一种基于残差U-Net网络的染色体图像分割方法.以残差网络和U-Net网络为基础简化深层网络的训练,利用丰富的跳跃连接促进信息传播;通过将U-Net网络底层的卷积层替换成不同尺度的空洞卷积,保持特征空间分辨率不变的同时扩大特征感受野,实现多尺度感受野提取图像特征的同时减少特性信息的丢失;压缩路... 相似文献
7.
基于神经网络的自适应图像分割 总被引:1,自引:0,他引:1
非均匀光照条件下的图像目标难以用阈值选取方法分割,本文使用神经网络建立自适应阈值曲面,以此作为图像分割的依据.自适应阈值曲面由图像中具有高Laplace值的边缘拟合而成,拟合过程由神经网络实现.计算机摸拟证实了此设想的可行性以及相对阈值分割方法的优越性. 相似文献
8.
9.
研究了基于PCNN的人脸图像分割算法。利用简化型PCNN对人脸图像进行分割,根据人脸图像的灰度特征和空间信息的相关性,得到了人脸图像的神经元点火序列,该点火序列就是图像分割的结果。通过MATLAB仿真实现了该算法,表明该算法具有一定的工程价值。 相似文献
10.
采用BP网络模型,研究了彩色图像分割和边缘检测的神经网络方法.选取训练样本图像,并分别以区域增长分割法和Sobel边缘检测方法所得结果为导师信号,将图像的特征向量采用BP算法进行训练,然后对实测图像进行分割和边缘检测.与采用区域增长法所得分割结果和采用Sobel边缘检测方法所得边缘检测结果进行比较,BP网络方法能取得同样较好的效果 相似文献
11.
谢文兰 《湖南工程学院学报(自然科学版)》2012,(2):45-47
通过建立一个多输出的BP神经网络,提取图像的底层特征作为网络的输入,用语义期望值作为网络的输出.训练完成后,该网络能够对风景图像进行多种语义分类检索,从而建立起了从底层特征到语义特征之间的映射.提出的一种颜色提取方法不仅降低了颜色特征向量的维数,减少了计算量,节省了时间,而且在描述风景图像的颜色内容上更加准确.如何选取图像的语义阈值是一个重点也是一个难点,通过实验发现,当阈值的选取范围在[0.55,0.65]时,检索的查全率和准确率能达到一个比较好的平衡效果.实验证明,此方法在风景图像的分类上取得了较好的检索查全率和准确率. 相似文献
12.
根据眼底图象中视杯的边沿特征,提出了一种基于BP神经网络的视杯分割方法,详述了这种方法的实现过程,并研究了BP学习算法的加速问题.实验证明,这种方法的分割效果较好. 相似文献
13.
设计了一种基于3个两层BP神经网络和随机森林的织物图像疵点判别网络.借助频谱图滤波、灰度共生矩阵和局部二值模式提取织物图像的3个特征向量,经过3个独立的两层BP神经网络进行训练和测试,利用BP神经网络测试结果并结合随机森林得到最终的判别结果.试验结果表明,设计的网络判别能力强,准确率达到99.9%. 相似文献
14.
阐述了BP神经网络模型及原理,提出了基于BP神经网络的发动机故障诊断分析方法,在理论分析的基础上,对发动机故障的检测和分析进行了MATLAB仿真,仿真结果表明,利用BP神经网络对发动机故障进行检侧具有检测精度高、速度快的特点. 相似文献
15.
基于BP神经网络解决小麦群体特征的图像理解问题 总被引:1,自引:0,他引:1
小麦生长发育群体图像动态信息的识别与分析能够为小麦高产田的诊断提供定量化的诊断依据。依据诊断出的作物各生长阶段的群体结构和个体指标,通过技术措施对群体发展动态进行监测调控,使其沿着高产目标的预定方向发展。本文以小麦群体绿色面积和叶面积指标信息的获取为例,应用图像分割、图像增强技术提取小麦群体图像特征,采用BP人工神经网络(ANN)方法,建立小麦图像群体特征识别自学习系统,并将其应用于小麦图像群体特征识别中,准确率在85%以上,表明利用ANN技术对小麦图像群体特征识别是可行的。 相似文献
16.
基于BP神经网络的图像识别研究 总被引:6,自引:0,他引:6
提出一种采用BP神经网络实现钢材编号文字识别的方法?先采用彩色图像HSI空间中S分量的特性,定位钢材区域,然后利用一系列图像处理技术,对图像中钢材编号区域定位、分割字符,最后采用BP神经网络进行字符识别。实践证明,采用BP神经网络,可有效地识别铜材编号,速度快、识别率高,具有较高的实用价值。 相似文献
17.
基于神经网络的公路网规模预测 总被引:2,自引:1,他引:2
路网规模研究是公路网规划的重要内容。考虑影响公路网合理规模的多种因素,提出了一种基于BP神经网络的公路网规模预测方法,并建立了模拟路网规模与其影响因素间的非线形关系预测模型。步骤依次为:改进传统的BP算法、合理确定影响因素、建立预测模型、模型的训练与检验、数据预测。预测结果表明,该方法客观、合理,预测精度高,实用性强,具有较强的理论与实际应用价值。 相似文献
18.
为了提高人脸检测速度,提出了一种基于肤色分割的快速人脸检测方法.利用颜色信息将彩色图像分割成皮肤区域和非皮肤区域,从而缩小了神经网络的检测区域,提高了人脸检测速度. 相似文献
19.
介绍了一种基于神经网络自学习PID控制器,该控制器能通过自学习不断进行适应性控制,以保证系统的输出符合实际应用的要求, 其主要特点是采用线性预测模型来近似确定控制参数,进而进行神经网络控制,仿真结果表明该方法有较好的效果。 相似文献
20.
在分析影响税收主要因素的基础上,将反向传播(BP)神经网络理论应用于税收的预测.首先对初始数据进行预处理,使其适应BP神经网络学习的要求,然后建立基于BP神经网络的税收预测模型.采用实际数据对模型进行验证,并将其与传统的统计模型相比较,证明了基于BP神经网络的税收预测模型有较高的精度和较强的实用性. 相似文献