首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spray-drying was used to produce the high emissivity NiCr2O4 powders with a spinel structure. Preliminary investigations focused on fabricating the high emissivity powders for infrared radiation coatings and finding the relationship between microstructure and emissivity. The NiCr2O4 powders were characterized for composition, microstructure, and infrared emissivity by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared radiant instrument, and Fourier transform infrared spectra (FT-IR). Thermogravimetry and differential thermal analysis show that the appropriate baking temperature for NiCr2O4 powder preparation is about 1200°C. The emissivity measurement and FT-IR spectra show that, because of the special spinel structure, the NiCr2O4 powders have a high emissivity about 0.91. Spray-drying is a suitable method to produce the high emissivity ceramic powders.  相似文献   

2.
The conductivity of MnCo2O4 spinel, the best route to form the MnCo2O4 protective coating applied by the sol-gel process, and its effect on the intermediate temperature oxidation behavior of SUS 430 alloy, a typical material for the interconnect of solid oxide fuel cell (SOFC), was investigated. The phase structure and surface morphology of the coating and surface oxides were characterized by XRD, SEM and EDS; the “4-probe” method was employed to determine the conductivity of MnCo2O4 spinel and the area specific resistance (ASR) of the surface oxides. The conductivity of MnCo2O4 spinel is excellent, which is 2 orders of magnitude better than that of MnCr2O4 spinel. Long-term thermally cyclic oxidation at 750°C in SOFC cathode atmosphere and ASR measurement have shown that calcined in reducing atmosphere followed by pre-oxidation in the air is the best technique for forming the MnCo2O4 protective coating, which enhances the oxidation resistance, and improves the electrical conductivity and adherence of coated SUS 430 alloy significantly. As a result, the MnCo2O4 spinel is the most potential candidate for SOFC metallic interconnect protective coating application.  相似文献   

3.
The pore structure of Cr2O3/Al2O3 catalysts and the surface chemical properties of these pores were characterized by positron lifetime and coincidence Doppler broadening (CDB) measurements. Four lifetime components could be resolved from the positron lifetime spectrum, with two long lifetime components and two short lifetime components. The two long lifetimes τ4 and τ3 are attributed to ortho-positronium (o-Ps) annihilation in large pores and microvoids, respectively. With increasing Cr2O3 content, both τ4 and its intensity I4 show sharp decrease, while τ3 and its intensity I3 keep nearly unchanged. The Doppler broadening S parameters also show sharp decrease with increasing Cr2O3 content. Detailed analysis of the CDB spectrum reveals that the parapositronium (p-Ps) intensity also decreases with increasing Cr2O3 content. This indicates that the change of o-Ps lifetime τ4 is due to the chemical quenching by Cr2O3 but not spin-conversion of positronium. The decrease of o-Ps intensity I4 indicates that Cr2O3 also inhibits positronium formation.  相似文献   

4.
A PAA sol-gel method, which is based on the chelate effect of PAA polymer, was developed for the synthesis of the spinel LiMn2O4 material. The pyrolysis process of the PAA-nitrate mixture precursor was investigated by TG and DTA analysis. It is found that the structure and electrochemical properties of the material are sensitive to the atmosphere employed in the synthesis process. Preliminary results show that the material thus prepared has a good electrochemical performance even at high charge and discharge current. Foundation item: Supported by the National Science Foundation of China (No. 29833090) Biography: Zhan Hui (1973-), female, Ph.D. research direction relectrochemistry.  相似文献   

5.
Al2O3/TiO2/Fe2O3/Yb2O3 composite powder was synthesized via the sol-gel method. The structure, morphology, and radar-absorption properties of the composite powder were characterized by transmission electron microscopy, X-ray diffraction analysis and RF impedance analysis. The results show that two types of particles exist in the composite powder. One is irregular flakes (100-200 nm) and the other is spherical Al2O3 particles (smaller than 80 nm). Electromagnetic wave attenuation is mostly achieved by dielectric loss. The maximum value of the dissipation factor reaches 0.76 (at 15.68 GHz) in the frequency range of 2-18 GHz. The electromagnetic absorption of waves covers 2-18 GHz with the matching thicknesses of 1.5-4.5 mm. The absorption peak shifts to the lower-frequency area with increasing matching thickness. The effective absorption band covers the frequency range of 2.16-9.76 GHz, and the maximum absorption peak reaches -20.18 dB with a matching thickness of 3.5 mm at a frequency of 3.52 GHz.  相似文献   

6.
A novel supersonic plasma spraying was used to prepare rare earth oxides doped CoCrW coatings. X-ray diffractometer, contact surface profiler, hardness tester, micro-friction and -wear tester and en- vironmental scanning electron microscope equipped with energy dispersive X-ray spectroscopy were employed to investigate the phase structure, surface morphology, microhardness, friction and wear properties of the sprayed coatings. The results show that rare earth oxide doped coatings have high microhardness and excellent tribological properties. Furthermore, the friction and wear mechanisms of sprayed coatings are also discussed.  相似文献   

7.
Oxide eutectic ceramic in situ composites have attracted significant interest in the application of high-temperature structural materials because of their excellent high-temperature strength, oxidation and creep resistance, as well as outstanding microstructural stability. The directionally solidified ternary Al2O3/YAG/ZrO2 hypereutectic in situ composite was successfully prepared by a laser zone remelting method, aiming to investigate the growth characteristic under ultra-high temperature gradient. The microstructures and phase composition of the as-solidified hypereutectic were characterized by using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The results show that the composite presents a typical hypereutectic lamellar microstructure consisting of fine Al2O3 and YAG phases, and the enriched ZrO2 phases with smaller sizes are randomly distributed at the Al2O3/YAG interface and in Al2O3 phases. Laser power and scanning rate strongly affect the sample quality and microstructure characteristic. Additionally, coarse colony microstructures were also observed, and their formation and the effect of temperature gradient on the microstructure were discussed.  相似文献   

8.
The ruthenium-substituted polyoxometallic acid H6 [Ru(H2O)FeW 11O39 ]·18H2O was synthesized by stepwise acidification and stepwise addition of solutions of the component elements, and an ion-exchange-cooling method. The product was characterized using inductively coupled plasma spectrometry (ICP), Infrared Spectroscopy (IR), Ultraviolet Spectroscopy (UV), and X-ray diffraction (XRD). The results show that this complex has the Keggin structure. The determination of the thermal stability and proton conductivi...  相似文献   

9.
Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055℃. The temperature (t) and the addition of Al2O3 (W(Al2O3)), Sm2O3 (W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity (κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature (t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3)=3wt%, W(Al2O3):W(Sm2O3)=7:3, and a temperature of 965 to 995℃, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.  相似文献   

10.
The Er3 doped Al2O3 powders were prepared by the sol-gel method using the aluminium isopropoxide [Al(OC3H7)3]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)3.5H2O]. The different phase structure, including three crystalline types of (Al,Er)2O3 phases, γ, θ, α, and two Er-Al-O phases, ErAlO3 and Al10Er6O24, was obtained with the 1 mol% Er3 doped Al2O3 powders at the different sintering temperatures of 600―1200℃. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3 , were detected by a 978 nm semiconductor laser diodes excitation. The phase structure and OH content had evident influence on the up-conversion emissions intensity. The maximum intensities of both the green and red emissions were obtained respectively for the Er3 doped Al2O3 powders sintered at 1200 ℃, which was composed mainly of α-(Al,Er)2O3, less of ErAlO3 and Al10Er6O24 phases, and with the least OH content. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3 doped Al2O3 powders.  相似文献   

11.
Spinel compounds LiNi0.5Mn1.3Ti0.2O4 (LNMTO) and Li4Ti5O12 (LTO) were synthesized by different methods. The particle sizes of LNMTO and LTO are 0.5–2 and 0.5–0.8 μm, respectively. The LNMTO/LTO cell exhibits better electrochemical properties at both a low current rate of 0.2C and a high current rate of 1C. When the specific capacity was determined based on the mass of the LNMTO cathode, the LNMTO/LTO cell delivered 137 mA·h·g−1 at 0.2C and 118.2 mA·h·g−1 at 1C, and the corresponding capacity retentions after 30 cycles are 88.5% and 92.4%, respectively.  相似文献   

12.
NiCrAlY coatings were deposited on Ni-based superalloy by high-velocity oxygen-fuel spraying (HVOF). Surface modification by means of grit-blasted, shot-peened and ground methods was used in order to study the effect of surface conditions on the isothermal oxidation behavior of HVOF-sprayed NiCrAlY coatings at 1050 ℃. The results showed that surface modification had an obvious effect on the isothermal oxidation behavior of the coatings. There was a large decrease in growth rate compared with the as-sprayed coating. The scale formed on the grit-blasted and shot-peened coatings was a mixture of Al2O3 and NiCr2O4, while the oxide formed on the ground coating was composed mainly of Al2O3. After surface modification, the content of NiCr2O4 spinels decreased compared with the as-sprayed coating.  相似文献   

13.
Superparamagnetic carbon-coated Fe3O4 nanoparticles with high magnetization (85 emu·g-1) and high crystallinity were synthesized using polyethylene glycol-4000 (PEG (4000)) as a carbon source. Fe3O4 water-based bilayer-surfactant-enveloped ferrofluids were subsequently prepared using sodium oleate and PEG (4000) as dispersants. Analyses using X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy indicate that the Fe3O4 nanoparticles with a bilayer surfactant coating retain the inverse spinel-type structure and are successfully coated with sodium oleate and PEG (4000). Transmission electron microscopy, vibrating sample magnetometry, and particle-size analysis results indicate that the coated Fe3O4 nanoparticles also retain the good saturation magnetization of Fe3O4 (79.6 emu·g-1) and that the particle size of the bilayer-surfactant-enveloped Fe3O4 nanoparticles is 42.97 nm, which is substantially smaller than that of the unmodified Fe3O4 nanoparticles (486.2 nm). UV–vis and zeta-potential analyses reveal that the ferrofluids does not agglomerate for 120 h at a concentration of 4 g·L-1, which indicates that the ferrofluids are highly stable.  相似文献   

14.
Al-Ti-O inclusions always clog submerged nozzles in Ti-bearing Al-killed steel. A typical synthesized Al2TiO5 inclusion was immersed in a CaO-SiO2-Al2O3 molten slag for different durations at 1823 K. The Al2TiO5 dissolution paths and mechanism were revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Decreased amounts of Ti and Al and increased amounts of Si and Ca at the dissolution boundary prove that inclusion dissolution and slag penetration simultaneously occur. SiO2 diffuses or penetrates the inclusion more quickly than CaO, as indicated by the w(CaO)/w(SiO2) value in the reaction region. A liquid product (containing 0.7–1.2 w(CaO)/w(SiO2), 15wt%–20wt% Al2O3, and 5wt%–15wt% TiO2) forms on the inclusion surface when Al2TiO5 is dissolved in the slag. Al2TiO5 initially dissolves faster than the diffusion rate of the liquid product toward the bulk slag. With increasing reaction time, the boundary reaches its largest distance, the Al2TiO5 dissolution rate equals the liquid product diffusion rate, and the dissolution process remains stable until the inclusion is completely dissolved.  相似文献   

15.
The electro-deoxidation of V2O3 precursors was studied. Experiments were carried out with a two-terminal electrochemical cell, which was comprised of a molten electrolyte of CaCl2 and NaCl with additions of CaO, a cathode of compact V2O3, and a graphite anode under the potential of 3.0 V at 1173 K. The phase constitution and composition as well as the morphology of the samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). 3 g of V2O3 could be converted to vanadium metal powder within the processing time of 8 h. The kinetic pathway was investigated by analyzing the product phase in samples prepared at different reduction stages. CaO added in the reduction path of V2O3 formed the intermediate product CaV2O4.  相似文献   

16.
Ag nanoparticles were sputter-deposited on ammonium persulfate ((NH4)2S2O8) powder to obtain (NH4)2S2O8-Ag powder, which was used to synthesize the HCl-doped polyaniline-Ag (HCl-PANI-Ag) composite via a polymerization procedure. The Ag nanoparticles were dispersed in the HCl-PANI matrix, and their sizes mainly ranged from 3 to 6 nm. The Ag nanoparticles did not affect the structure of emeraldine salt in the composite, and they increased the ordered crystalline regions in the HCl-PANI matrix. The HCl-PANI-Ag composite had a conductivity of (6.8 ±0.1) S/cm, which is about four times larger than that of the HCl-PANI. The charge transport mechanism in the composite is explained by the three-dimensional Mott variable-range hopping (3D-Mott-VRH).  相似文献   

17.
To improve their mechanical and thermal insulation properties, aluminum silicate fibrous materials with in situ synthesized K2Ti6O13 whiskers were prepared by firing a mixture of short aluminum silicate fibers and gel powders obtained from a sol-gel process. During the preparation process, the fiber surface was coated with K2Ti6O13 whiskers after the fibers were subjected to a heat treatment carried out at various temperatures. The effects of process parameters on the microstructure, compressive strength, and thermal conductivity were analyzed systematically. The results show that higher treatment temperatures and longer treatment durations promoted the development of K2Ti6O13 whiskers on the surface of aluminum silicate fibers; in addition, the intersection structure between whiskers modulated the morphology and volume of the multi-aperture structure among fibers, substantially increasing the fibers' compressive strength and reducing their heat conduction and convective heat transfer at high temperatures.  相似文献   

18.
Polyoxometalate (POM) has promising antiviral activities. It shows broad-spectrum inhibiting ability, high efficiency, and low tox-icity. Experimental assays show that titanium containing polyoxotungstates have anti-influenza-virus activity. In this paper, the bind-ing mechanisms of five isomers of di-Ti-substituted polyoxotungstate, [α-1,2-PTi2W10O40]7– (α-1,2), [α-1,6-PTi2W10O40]7– (α-1,6), [α-1,5-PTi2W10O40]7– (α-1,5), [α-1,4-PTi2W10O40]7– (α-1,4) and [α-1,11-PTi2W10O40]7– (α-1,11), to five subtypes of influenza virus A neuraminidase (FluV-A NA) were investigated in the context of aqueous solution by using molecular docking and molecular dynamics studies. The results show that the isomer α-1,2 is superior to other isomers as a potential inhibitor to neuraminidase. The positively charged arginine residues around the active site of NA could be induced by negatively charged POM to adapt themselves and could form salt bridge interactions and hydrogen bond interactions with POM. The binding free energies of POM/NA complexes range from –5.36 to –8.31 kcal mol–1. The electrostatic interactions are found to be the driving force during the binding process of POM to NA. The conformational analysis shows that POM tends to bind primarily with N1 and N8 at the edge of the active pocket, which causes the conformational change of the pincers structure comprising residue 347 and loop 150. Whereas, the active pockets of N2, N9 and N4 are found to be more spacious, which allows POM to enter into the active pockets directly and anchor there firmly. This study shows that negatively charged ligand as POM could induce the reorganization of the active site of NA and highlights POM as a promising inhibitor to NA despite the ever increasing mutants of NA.  相似文献   

19.
Polycrystalline samples of a novel spin-liquid compound Tb2Ti2O7 were prepared by a standard solid-state reaction. X-ray diffraction at room temperature confirms that the synthesized compound of Tb2Ti2O7 is single phase with cubic unit cell constant a0 of 1.015 44 nm. Magnetic susceptibility measurements in the temperature range between 100 and 300 K give an effective moment of 9.44 μB and Curie-Weiss temperature of 12.68 K, respectively, indicating the dominance of antiferromagnetic interactions. However, below 50 K, the magnetic behavior of Tb2Ti2O7 deviates from Curie-Weiss law, whose origin remains suspicion.  相似文献   

20.
To enhance the microwave absorption performance of silicon carbide nanowires (SiCNWs), SiO2 nanoshells with a thickness of approximately 2 nm and Fe3O4 nanoparticles were grown on the surface of SiCNWs to form SiC@SiO2@Fe3O4 hybrids. The microwave absorption performance of the SiC@SiO2@Fe3O4 hybrids with different thicknesses was investigated in the frequency range from 2 to 18 GHz using a free-space antenna-based system. The results indicate that SiC@SiO2@Fe3O4 hybrids exhibit improved microwave absorption. In particular, in the case of an SiC@SiO2 to iron(Ⅲ) acetylacetonate mass ratio of 1:3, the microwave absorption with an absorber of 2-mm thickness exhibited a minimum reflection loss of -39.58 dB at 12.24 GHz. With respect to the enhanced microwave absorption mechanism, the Fe3O4 nanoparticles coated on SiC@SiO2 nanowires are proposed to balance the permeability and permittivity of the materials, contributing to the microwave attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号