首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A laser-plasma accelerator producing monoenergetic electron beams   总被引:2,自引:0,他引:2  
Particle accelerators are used in a wide variety of fields, ranging from medicine and biology to high-energy physics. The accelerating fields in conventional accelerators are limited to a few tens of MeV m(-1), owing to material breakdown at the walls of the structure. Thus, the production of energetic particle beams currently requires large-scale accelerators and expensive infrastructures. Laser-plasma accelerators have been proposed as a next generation of compact accelerators because of the huge electric fields they can sustain (>100 GeV m(-1)). However, it has been difficult to use them efficiently for applications because they have produced poor-quality particle beams with large energy spreads, owing to a randomization of electrons in phase space. Here we demonstrate that this randomization can be suppressed and that the quality of the electron beams can be dramatically enhanced. Within a length of 3 mm, the laser drives a plasma bubble that traps and accelerates plasma electrons. The resulting electron beam is extremely collimated and quasi-monoenergetic, with a high charge of 0.5 nC at 170 MeV.  相似文献   

2.
Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (the wakefield) driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV m(-1) (refs 1-3). These fields are thousands of times greater than those achievable in conventional radio-frequency accelerators, spurring interest in laser accelerators as compact next-generation sources of energetic electrons and radiation. To date, however, acceleration distances have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short acceleration distance results in low-energy beams with 100 per cent electron energy spread, which limits potential applications. Here we demonstrate a laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 10(9) electrons above 80 MeV). Our technique involves the use of a preformed plasma density channel to guide a relativistically intense laser, resulting in a longer propagation distance. The results open the way for compact and tunable high-brightness sources of electrons and radiation.  相似文献   

3.
 结合2014 年2 月参加“对未来环型对撞机研究的启动会议”的见闻,介绍了全球高能物理界正在讨论如何通过广泛国际合作、在欧洲核子中心(CERN)建造未来环形高能加速器和粒子对撞机的新动态,简要回顾了历史上高能加速器和对撞机建设的经验和教训,摘编了与会者提出的相关见解和建议,希望中国高能物理的长远发展可从中借鉴和参考。  相似文献   

4.
High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma. However, the electron beams produced from previous laser-plasma experiments have a large energy spread, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser-plasma interactions, showing that--under particular plasma conditions--it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of 'table-top' particle accelerators.  相似文献   

5.
Faure J  Rechatin C  Norlin A  Lifschitz A  Glinec Y  Malka V 《Nature》2006,444(7120):737-739
In laser-plasma-based accelerators, an intense laser pulse drives a large electric field (the wakefield) which accelerates particles to high energies in distances much shorter than in conventional accelerators. These high acceleration gradients, of a few hundreds of gigavolts per metre, hold the promise of compact high-energy particle accelerators. Recently, several experiments have shown that laser-plasma accelerators can produce high-quality electron beams, with quasi-monoenergetic energy distributions at the 100 MeV level. However, these beams do not have the stability and reproducibility that are required for applications. This is because the mechanism responsible for injecting electrons into the wakefield is based on highly nonlinear phenomena, and is therefore hard to control. Here we demonstrate that the injection and subsequent acceleration of electrons can be controlled by using a second laser pulse. The collision of the two laser pulses provides a pre-acceleration stage which provokes the injection of electrons into the wakefield. The experimental results show that the electron beams obtained in this manner are collimated (5 mrad divergence), monoenergetic (with energy spread <10 per cent), tuneable (between 15 and 250 MeV) and, most importantly, stable. In addition, the experimental observations are compatible with electron bunch durations shorter than 10 fs. We anticipate that this stable and compact electron source will have a strong impact on applications requiring short bunches, such as the femtolysis of water, or high stability, such as radiotherapy with high-energy electrons or radiography for materials science.  相似文献   

6.
High intensity hadron beam has wide-range important applications.In recent years,several projects with intense-beam hadron accelerator are under design,development or construction in China.We are facing a lot of challenges in beam physics and key technology of the accelerators.Beam loss and beam emittance must be minimized for such a high intensity accelerator.Space charge effect and nonlinear dynamics should be taken into account in beam physics and accelerator design.In this paper we will present the recent research progress in China on beam dynamics,new technology development and beam experiments for intense beam hadron accelerators,including linear accelerator,synchrotron and cyclotron.  相似文献   

7.
STAR Collaboration 《Nature》2011,473(7347):353-356
High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4He), also known as the anti-α (α), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B?相似文献   

8.
1988年建成的北京正负电子对撞机(BEPC)使我国在国际高能物理研究领域占据了一席之地,在τ-粲物理研究中居于领先地位.面对激烈的国际竞争,中国科学家提出了对BEPC进行重大改造的计划,即BEPCⅡ.工程从2004年初开始建设,经过5年的努力,按指标、按计划、按预算、高质量地完成了各项建设任务,于2009年7月通过了国家验收,随即投入实验运行,取得了若干重大成果,使我国继续保持在粲物理研究的国际领先地位.本文简要回顾BEPC的情况,着重叙述BEPCⅡ的科学目标、BEPCⅡ加速器、BESⅢ探测器和取得的主要物理成果,并展望了下一步的研究工作和目标.  相似文献   

9.
射频超导(sRF)加速技术已广泛应用于基于加速器的大科学装置.在国际直线对撞机和其他相关项目的推动下,近年来国际上多个射频超导实验室开展了高梯度射频超导加速腔的研制.在不断改进精密加工、电磁场调平、表面处理和电子束焊接等工艺流程的基础上,北京大学近期研制成功一只高质量9-cell超导加速腔,其加速梯度为32.6MV/m,品质因数大于1.0×10^10,性能指标全面达到国际直线对撞机(ILC)的要求.这表明我国已经掌握了高水平超导加速腔的研制技术,为未来参加ILC国际合作以及建设其他采用射频超导加速技术的大科学装置打下了良好基础.  相似文献   

10.
超强激光与等离子体相互作用可以获得高于传统加速器三个数量级以上的加速电场梯度,更加有效地加速离子,从而能够显著缩小加速器的体积和造价.鞘层加速(TNSA)和光压稳相加速(RPA)是目前研究得最多的两种主要激光加速机制.与鞘层加速相比,光压稳相加速的加速效率和离子能量更高、单能性更好.在提出光压稳相加速原理的基础上,北京大学正在建造一台基于该原理的超小型激光加速器系统.本文将介绍北京大学在激光加速研究方面的进展和激光加速器系统的研制情况,包括理论模拟、前期准备实验、自支撑纳米靶的制备以及离子输运线的初步设计.  相似文献   

11.
Nonlinear transport of intense continuous beam in the axial-symmetric electrostatic fields is analyzed with the Lie algebraic method. The K-V particle distribution is adopted in the analysis. The results obtained can be used in the calculations of the intense continuous beam dynamics in the beam optical systems consisting of drift spaces, electrostatic lenses, and DC electrostatic accelerating tubes. A computer code has been designed for practical simulations. To meet the needs of accurate calculation, all the elements are divided into many small segments, the electric fields in each segment are regarded as uniform fields, and the dividing points are treated as thin lenses. Iteration procedures are adopted in the code to obtain self-consistent solutions. The code can be used to design low energy dc beam transport systems, electrostatic accelerators, and ion implantation machines.  相似文献   

12.
The properties of 125 GeV new particle, which was discovered in 2012 at the Large Hadron Collider (LHC), are found to be consistent with those of the Higgs boson in the standard model (SM). Hereafter the new particle is dubbed as SM-like Higgs boson. However there is still spacious room for physics beyond the SM (BSM) due to the limited energy and luminosity of the LHC. With more data, experiments will scrutinize whether the new particle is indeed the SM one or not. At the same time, one believes that discovery of the SM-like Higgs boson is just the start of the new era of particle physics. The predominant topic is whether there are other new Higgs bosons as speculated in various BSM models. In this short review, we will describe the current status of Higgs physics at the LHC and several BSM models which contain more Higgs sectors. In literatures, there are numerous studies on extended Higgs sector and a comprehensive review is beyond the scope of this review. Instead, we will present two latest studies on Higgs physics: (1) how to detect the charged Higgs boson and measure \(\tan \beta \) after including the top polarization information, and (2) how to discover the extra neutral Higgs boson via the pair production of SM-like Higgs boson.  相似文献   

13.
利用哈密顿理论给出了等离子体电子在尾场中捕获及其加速与激光、等离子体参量的关系表达式.讨论了等离子体电子密度和初始动量对电子自注入和加速的影响机制.研究结果表明:静止电子不能被尾场捕获并加速,而具有一定初始动量的电子容易自注入至激光尾场中并得到加速.等离子体密度越小,激光尾场场强越强,电子将获得更大的能量.2维粒子模拟结果与理论结论一致.所得结果对超强超短脉冲激光尾场加速电子的方案具有理论指导意义.  相似文献   

14.
Laser acceleration of quasi-monoenergetic MeV ion beams   总被引:1,自引:0,他引:1  
Acceleration of particles by intense laser-plasma interactions represents a rapidly evolving field of interest, as highlighted by the recent demonstration of laser-driven relativistic beams of monoenergetic electrons. Ultrahigh-intensity lasers can produce accelerating fields of 10 TV m(-1) (1 TV = 10(12) V), surpassing those in conventional accelerators by six orders of magnitude. Laser-driven ions with energies of several MeV per nucleon have also been produced. Such ion beams exhibit unprecedented characteristics--short pulse lengths, high currents and low transverse emittance--but their exponential energy spectra have almost 100% energy spread. This large energy spread, which is a consequence of the experimental conditions used to date, remains the biggest impediment to the wider use of this technology. Here we report the production of quasi-monoenergetic laser-driven C5+ ions with a vastly reduced energy spread of 17%. The ions have a mean energy of 3 MeV per nucleon (full-width at half-maximum approximately 0.5 MeV per nucleon) and a longitudinal emittance of less than 2 x 10(-6) eV s for pulse durations shorter than 1 ps. Such laser-driven, high-current, quasi-monoenergetic ion sources may enable significant advances in the development of compact MeV ion accelerators, new diagnostics, medical physics, inertial confinement fusion and fast ignition.  相似文献   

15.
Wyatt T 《Nature》2007,448(7151):274-280
Over the past quarter of a century, experiments at high-energy particle colliders have established the standard model as the precise theory of particle interactions up to the 100 GeV scale. A series of important experimental discoveries and measurements have filled in most of the missing pieces and tested the predictions of the standard model with great precision.  相似文献   

16.
 粒子物理是研究物质的基本组成和相互作用的前沿学科。从希格斯物理、新物理寻找、中微子物理、暗物质寻找、新强子态和强作用力机制研究、以及未来对撞机研究等方面回顾了2018年粒子物理学取得的重大进展及突破。  相似文献   

17.
弯晶的引出效率与同步加速器的束流动力学稳定性   总被引:3,自引:0,他引:3  
近年来,弯晶的束流控制技术得到了迅速发展.在加速器物理中,粒子能量和束流强度一直是人们追求的目标,而引出技术和引出效率则是保证柬流强度的关键.在经典力学框架内和偶极近似下,导出了粒子在弯晶中的一般运动方程.在准静态近似下,利用哈密顿原理分析了系统的稳定性;在相空间密度均匀分布假设下,利用相面积概念讨论了弯晶的引出效率.用Melnikov方法描述了系统的混沌行为及临界性质,给出了常曲率和变曲率弯晶的退道长度.  相似文献   

18.
在800MeV电子储存环上探测到38GeV异常电子出射的迹象   总被引:1,自引:0,他引:1  
根据一个完备的质量-速度关系式(其最可几的极大值形式就是Lorentz-Einstein质量公式),预计加速器束流电子在电场作用下将以确定的微小几率产生能量远大于正常值的超高能电子.在NSRL800MeV电子储存环上进行了初步实验,探测到从7.0GeV到38.4GeV的异常电子出射迹象,与理论预期的结果一致.  相似文献   

19.
在激光等离子体相互作用中对自注入电子束的加速及其对尾场的影响进行了理论研究.自注入电子束在空泡底部削弱了激光尾波静电场.随着自注入电子束电荷密度的增加,尾波场结构明显改变和空泡纵向变长.随后的鞘层电子须以较高的初始纵向动量才能自注入到不断演化的空泡尾场中.当自注入电子束的库仑场大于空泡内静电场时,该电子束将驱动等离子体尾波场.  相似文献   

20.
在低速太阳风中,在离子声波湍动已经激发的区域,可以产生沿着一定方向运动的逃兔电子束,该电子束可以激发起强烈的纵等离子激元的湍动,朗缪尔波的主要吸收机制是通过等离子体热电子的非线性散射,朗缪尔波受激转换为离子声波,这种转换随着电子的迅速加热,几乎所有有纵等离子激元的能量都转移给散射电子,导致低速太阳风中电子的温度高于质了的温度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号