首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 310 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

7.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

8.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
土壤条件对PAHs紫外光降解影响及动力学研究   总被引:3,自引:3,他引:0  
研究紫外照射条件下,土壤厚度对多环芳烃苯并[a]芘、芘光降解的影响及其动力学变化,以及土壤粒径对多环芳烃苯并[a]芘、芘和菲的光解的影响。结果表明,苯并[a]芘和芘的光降解速率与土壤厚度呈负相关,光解速率的顺序为1.0mm〉1.6mm〉2.0mm〉2.4mm〉4.0mm,通过对实验数据的模拟土壤中苯并[a]芘和芘的光降解符合准一级动力模型;三种不同土壤粒径(分别小于1mm、0.45mm、0.25mm)对多环芳烃苯并[a]芘、芘和菲的光降解有明显影响,在三种粒径范围内,PAHs的降解在小于1mm土壤中最快,同一粒径中多环芳烃的降解速率:苯并[a]芘〉芘〉菲。  相似文献   

12.
尤晓明  赵纯  邓慧萍 《河南科学》2011,29(4):403-406
采用纳米级二氧化钛作为吸附和光催化降解材料,对水中土霉素进行吸附和光催化降解实验,实验过程中考察了反应时间、pH以及二氧化钛投加量对二氧化钛去除土霉素的影响,并分析并判断反应作用机制.结果表明,二氧化钛去除水中土霉素需在紫外灯光的照射下才能发生降解,比较pH和二氧化钛投加量对结果的影响之后发现,二氧化钛的投加量对去除水...  相似文献   

13.
三丁基氯化锡紫外光催化降解的初步研究   总被引:1,自引:0,他引:1  
本文报导了三丁基氯化锡的紫外光催化降解反应。降解过程是一个一级动力学反应。反应速率受催化剂用量、光照度、反应pH值及反应液中的溶解氧含量等因素的影响。其中,催化剂用量和光照度是主要的影响因素。三丁基氯化锡的光催化降解产物为二丁基锡及无机锡。  相似文献   

14.
研究了模拟太阳光作用下2-氯萘在土壤中的光降解动力学及影响因素。结果表明:2-氯萘的光降解符合一级动力学方程;其光降解率随土壤粒径的增加而增大,随土壤厚度和腐殖酸添加量的增加而减少,酸性条件对其光降解具有促进作用。  相似文献   

15.
以半导体TiO2为催化剂,对二苄基砜(ASO2A)进行光催化降解,研究降解二苄基砜的反应条件,讨论了TiO2为催化剂降解ASO2A的实质,初步确定反应机理.  相似文献   

16.
气溶胶中多环芳烃的光降解研究   总被引:6,自引:0,他引:6  
以大容量空气总悬浮微粒采样器采集了大气气溶胶样品,以石英滤膜为载体,研究了气溶胶中的多环芳烃在253.7nm紫外光照下的光降解规律。结果表明,气溶胶中的多环芳烃在紫外光照下发生迅速的降解,其光降解反应为1级反应,光降解速率常数与其极谱氧化半波电位及化合物结构有关。  相似文献   

17.
本文研究了阴离子表面活性剂DBS在光氧化过程中,光强度、光照射间、催化剂用量、pH等因素对分解速度的影响,同时还讨论了DBS处于嫩江自然水环境中,于阳光照射下分解的速率常数和半衰期。  相似文献   

18.
有机农药光催化降解研究进展   总被引:1,自引:0,他引:1  
有机农药一般光稳定性好,属生物难降解性有机物,在使用中易对周围生物种群及人类的健康带来危害.农药污染逐渐受到人们的关注,农药降解也成为研究的热点课题之一.利用高级氧化技术中的光催化方法降解有机农药是近年来兴起的一门绿色及高效新技术.本文从有机农药降解处理意义,有机农药分类和基本特性及常规处理方法等几个方面,综述了TiO...  相似文献   

19.
三种环状石油烃光化学降解规律的研究   总被引:3,自引:3,他引:0  
研究石油中3种常见组分四氢萘、 乙苯和十氢萘在人工光源以及太阳光照射下光化学降解的可行性. 结果表明, 在波长小于290 nm的紫外光照射下, 四氢萘、 乙苯和十氢萘均可以发生直接光解; 而在ZnO, TiO2以及Fenton试 剂存在的条件下, 上述物质可在波长大于290 nm的光的作用下发生间接光解.  相似文献   

20.
The photodegradation of bisphenol A (BPA) in aqueous solution containing metal ions and ascorbic acid (AsA) was investigated. After strong irradiation, the aqueous solution containing AsA and Cu2+ could produce hydroxyl radicals that induced the photodegradation of BPA. The photodegradation efficiency of BPA in the solution containing 70 μmol·L−1 Cu2+ and 15 mg·L−1 AsA reached 59% at pH 6.0 after 4 hours irradiation with high pressure mercury lamp. The photodegradation efficiency of BPA reached 10% after 4 hours irradiation with daylight lamp in the presence of 70 μmol·L−1 Cu2+ and 15 mg·L−1 ascorbic acid. BPA was not degraded in the aqueous solution only containing AsA or Cu2+. The BPA photodegradation in aqueous solution containing AsA and Fe3+ was weaker than in aqueous solution that containing AsA and Cu2+ at the same concentration. This work showed a new route of the BPA photodegradation in aqueous environment. Biography: PENG Zhang’e (1970–), female, Ph. D. candidate, research direction: aquatic environmental chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号