首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
研究了用速凝铸造工艺制造高性能烧结Nd Fe B磁体·同传统的铸锭工艺相比,速凝铸造工艺细化柱状晶,阻止α Fe枝晶相的产生,改善了铸态合金的微观结构·柱状晶宽度基本在5~25μm之间,尺寸较均匀;在制粉过程中容易得到粒度分布较好的磁粉;富Nd相分布较好,所以在较低烧结温度下可得到较高密度的磁体;由于具有细小均匀的微结构,利用速凝铸带工艺烧结出的磁体具有更高的Br,Hci和(BH)max·  相似文献   

2.
研究发现,烧结钕铁硼(NdFeB)磁体的矫顽力(H_C)、腐蚀性与晶界相成分、微观结构息息相关.传统熔炼添加重稀土元素虽可改善晶界相提高磁体的H_C及抗蚀性,但同时也使添加物均匀地分布于主相,引起稀磁效应并使成本增加.通过晶界添加非稀土物质调控磁体晶界相,可优化晶界相微观结构,提高其电极电位及润湿性,从而在磁体H_C和耐蚀性得以改善的同时,降低磁体中重稀土元素的用量及成本.对近些年晶界添加非稀土金属及合金化合物调控烧结NdFeB晶界相成分、微观结构及其对磁体H_C、抗蚀性影响的部分研究进行了归纳.  相似文献   

3.
Nd2Fe14(BC)/α-Fe系稀土永磁材料微观组织及磁性能   总被引:4,自引:0,他引:4  
为了提高纳米双相稀土永磁材料Nd2Fe14B/α-Fe的性能,研究了一种新型合金Nd9.0Fe85.5Nb1.0B4.0C0.5. 在合金中添加碳可提高矫顽力,添加钕可细化晶粒; 合金的淬态微观组织显著影响其磁性能,合金中的部分预析出微晶相有助于在随后的热处理中获得均匀的微观组织; 在热处理工艺中,晶化退火温度和时间对合金微观组织结构具有显著影响,并影响合金的磁性能.使用原子力/磁力显微镜观察Nd-Fe-(BC)/α-Fe纳米复合磁体的微观组织及磁畴结构,并由此对纳米双相稀土永磁材料中的交换耦合作用进行了解释.结果表明,最佳热处理工艺为 700 ℃保温15 min, 其性能为 剩磁1.381 Wb*m-2, 矫顽力518.05 kA*m-1, 剩磁比0.74, 最大磁能积137.75 kJ*m-3.  相似文献   

4.
为了提高纳米双相稀土永磁材料Nd2Fe14B/α-Fe的性能,研究了一种新型合金Nd9.0Fe85.5Nb1.0B4.0C0.5。在合金中添加碳可提高矫顽力,添加钕可细化晶粒;合金的淬态微观组织显著影响其磁性能,合金中的部分预析出微晶相有助于在随后的热处理中获得均匀的微观组织;在热处理工艺中,晶化退火温度和时间对合金微观组织结构具有显著影响,并影响合金的磁性能。使用原子力/磁力显微镜观察Nd-Fe-(BC)/α-Fe纳米复合磁体的微观组织及磁畴结构,并由此对纳米双相稀土永磁材料中的交换耦合作用进行了解释。结果表明,最佳热处理工艺为:700℃保温15min,其性能为:剩磁1.381Wb.m-2,矫顽力518.05kA.m-1,剩磁比0.74,最大磁能积137.75kJ.m-3。  相似文献   

5.
选择石蜡基热塑性粘结剂,采用粉末注射成形(PIM)工艺制备烧结Sm2Co17永磁体. 粘结剂由PW、HEPE、LEPE、PP和SA组成,通过分析喂料流变性能和磁体残碳含量,确定合适的组元配比(质量比)为PW∶LEPE∶PP∶SA=7∶1∶1∶1. 在氩气和氢气混合气氛下热脱脂,永磁体的碳、氧含量较低. 最终得到永磁体的磁性能为:剩磁Br=0.51T,内禀矫顽力Hcj=168kA·m-1,最大磁能积BHmax=21.3kJ·m-3. 与传统方法制备的永磁体相比,PIM永磁体退磁曲线的方形度较差,磁性较低. 造成磁体性能较差的原因是残碳的质量分数较高(≥0.33%),较高的碳含量导致磁体中出现高熔点的非磁性相ZrC,使Zr的有效含量降低,片状相和1∶5相体积分数减少,胞状显微组织和微观结构被破坏,磁性能下降. 因此,采用PIM工艺制备高性能烧结钐钴永磁体,其关键是降低磁体中的残余碳含量.  相似文献   

6.
利用OM,XRD和TEM等方法研究了喷射沉积-挤压-轧制SiC颗粒增强FVS1012(SiCP/FVS1012)薄板的微观结构以及退火对该复合材料硬度的影响.结果表明,本工艺制备的SiCP/FVS1012薄板具有优异的高温力学性能,在315℃时,σb=308 MPa,σ0.2=290 MPa,δ=5.69%;在415℃时,σb=201 MPa,σ0.2=182 MPa,δ=3.65%.微观组织分析表明:类球状细小弥散的Al12(Fe,V)3Si相的生成是该复合材料具有优异高温力学性能的主要原因,此外,SiC颗粒的加入对提高该复合材料的高温力学性能也有重要作用.  相似文献   

7.
采用放电等离子烧结技术,利用不同速率的快淬薄带制备出各向异性的热变形Nd-Fe-B磁体,运用振动样品磁强计和扫描电子显微镜对热变形磁体的磁性能和微观结构进行研究.结果表明:随着快淬薄带速率的增加,获得最佳磁性能的热变形温度也逐渐增加,三类热变形Nd-Fe-B磁体获得最佳磁性能的热变形温度分别为650,680和700°C;磁体最佳磁性能中的剩磁和最大磁能积随着快淬薄带速率的增加而降低,而内禀矫顽力却略有增加.磁体的晶粒尺寸随着热变形温度的增加而增大;相同热变形温度下,磁体的晶粒尺寸随快淬速率的增加而减小.  相似文献   

8.
采用热变形技术,制备了SmCo/FeCo纳米复合磁体,研究了热变形温度对磁体磁性能的影响规律.通过X射线衍射、热重分析、扫描电子显微镜和透射电子显微镜研究了磁体的相组成和微观结构.研究结果表明:随着热变形温度从600℃升高到1000℃,Sm2Co17硬磁相的含量不断增加,FeCo软磁相的含量不断减少,SmCo/FeCo纳米复合磁体的矫顽力从1.54 kOe提升到5.04 kOe;饱和磁化强度先增加后降低,剩余磁化强度呈"先升高、后降低、再升高"的趋势.相对于含有部分非晶相的600℃热变形磁体,700℃热变形磁体的晶化程度更高,饱和磁化强度和剩余磁化强度在700℃达到最大值.  相似文献   

9.
Zno∶Al(ZAO)透明导电薄膜具有高的载离子浓度和大的光学禁带宽度,因而具有优异的电学和光学性能,极具应用价值.本文研究了ZAO薄膜的微观组织结构、化学成分、及其应用前景.  相似文献   

10.
Nd-Fe-B永磁是一种新型的永磁材料,自从日本人M.Sagawa等人研制出来以后,引起了世界磁学界及工业界的极大关注,由于它具有极为优异的磁性能,因此各国都相继进行研究。美国学者K.S.V.L. Narasimhan等人研制的磁体最大磁能积已达到(BH)_m=44.8MGOe。 我院从1983年10月开始进行Nd-Fe-B磁体的研制工作。1986年磁性能已达到(BH)_m=44.5MGOe,接近国际先进的实验室水平。并且在电子水表,转速测量表,测振仪传感器,扬声器,等方面获得广泛应用,今后还将开发在电机上应用的领域。 我院精密合金教研室系统地研究了合金成分、工艺制度和磁性的关系,研究结果表  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号