首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roska B  Werblin F 《Nature》2001,410(6828):583-587
The mammalian visual system analyses the world through a set of separate spatio-temporal channels. The organization of these channels begins in the retina, where the precise laminations of both the axon terminals of bipolar cells and the dendritic arborizations of ganglion cells suggests the presence of a vertical stack of neural strata at the inner plexiform layer (IPL). Conversely, many inhibitory amacrine cell classes are multiply or diffusely stratified, indicating that they might convey information between strata. On the basis of the diverse stratification and physiological properties of ganglion cells, it was suggested that the IPL contains a parallel set of representations of the visual world embodied in the strata and conveyed to higher centres by the classes of ganglion cells whose dendrites ramify at that stratum. Here we show that each stratum receives unique and substantively different excitatory and inhibitory neural inputs that are integrated to form at least ten different, parallel space-time spiking outputs. The response properties of these strata are ordered in the time domain. Inhibition through GABAC receptors extracts spatial edges in neural representations and seems to separate the functional properties of the strata. We describe a new form of neuronal interaction that we call 'vertical inhibition' that acts not laterally, but between strata.  相似文献   

2.
Long-distance intraretinal connections in birds   总被引:1,自引:0,他引:1  
S Catsicas  M Catsicas  P G Clarke 《Nature》1987,326(6109):186-187
Electrophysiological experiments have shown in both birds and mammals that remote parts of the retina, several millimetres apart, interact at the retinal level. The anatomical basis of this is poorly understood, although in mammals some cells in the ganglion cell layer have axons that terminate in the inner plexiform layer several millimetres from the cell body. In birds, the longest previously reported intraretinal connections were from amacrine cells, extending only a few hundred microns. But we here describe very long connections that span almost the entire extent of the retina in chicks and chick embryos. The parent cell bodies are in the inner nuclear layer of the ventral half of the retina, and they project in topographical order onto the dorsal half. They do not project to the brain. They may be involved in selective switching of attention between the upper and lower parts of the visual field, at an unprecedentedly early stage of visual processing.  相似文献   

3.
S A Bloomfield 《Nature》1991,350(6316):347-350
Neurons sensitive to the orientation of light stimuli exist throughout the mammalian visual system, suggesting that this spatial feature is a fundamental cue used by the brain to decipher visual information. The most peripheral neurons known to show orientation sensitivity are the retinal ganglion cells. Considerable morphological and pharmacological data suggest that the orientation sensitivity of ganglion cells is formed, at least partly, by the amacrine cells, which are laterally oriented interneurons presynaptic to the ganglion cells in the inner plexiform layer. So far there have been few studies of the responses of amacrine cells to oriented visual stimuli and their role in forming orientation-sensitive responses in the retina remains unclear. Here I report the novel finding of a population of amacrine cells in the rabbit retina which are orientation-sensitive. These amacrine cells can be divided into two subtypes, whose orientation sensitivity is manufactured by two distinct mechanisms. The orientation sensitivity of the first subtype of amacrine cell is formed from the interactions of excitatory, centre-receptive field synaptic inputs and inhibitory inputs of opposite polarity, whereas that for cells of the second subtype seems to be the product of a marked asymmetry in their dendritic arbors.  相似文献   

4.
In the vertebrate retina, establishment of precise synaptic connections among distinct retinal neuron cell types is critical for processing visual information and for accurate visual perception. Retinal ganglion cells (RGCs), amacrine cells and bipolar cells establish stereotypic neurite arborization patterns to form functional neural circuits in the inner plexiform layer (IPL), a laminar region that is conventionally divided into five major parallel sublaminae. However, the molecular mechanisms governing distinct retinal subtype targeting to specific sublaminae within the IPL remain to be elucidated. Here we show that the transmembrane semaphorin Sema6A signals through its receptor PlexinA4 (PlexA4) to control lamina-specific neuronal stratification in the mouse retina. Expression analyses demonstrate that Sema6A and PlexA4 proteins are expressed in a complementary fashion in the developing retina: Sema6A in most ON sublaminae and PlexA4 in OFF sublaminae of the IPL. Mice with null mutations in PlexA4 or Sema6A exhibit severe defects in stereotypic lamina-specific neurite arborization of tyrosine hydroxylase (TH)-expressing dopaminergic amacrine cells, intrinsically photosensitive RGCs (ipRGCs) and calbindin-positive cells in the IPL. Sema6A and PlexA4 genetically interact in vivo for the regulation of dopaminergic amacrine cell laminar targeting. Therefore, neuronal targeting to subdivisions of the IPL in the mammalian retina is directed by repulsive transmembrane guidance cues present on neuronal processes.  相似文献   

5.
Although receptive fields of relay cells in the lateral geniculate nucleus of the cat nearly match those of their retinal afferents, only 10-20% of the synapses on these cells derive from the retina and are excitatory. Many more (30-40%) are inhibitory and largely control the gating of retinogeniculate transmission. These inhibitory synapses derive chiefly from two cell types: intrinsic local circuit neurones and cells in the adjacent perigeniculate nucleus. It has been difficult to study the functional organization of these inhibitory pathways; most efforts have relied on indirect approaches. Here we describe the use of direct techniques to study a local circuit neurone by iontophoresing horseradish peroxidase (HRP) into it, which completely labels the soma and processes of cells for subsequent light- and electron microscopic analysis. Although the response properties of the labelled cell are virtually indistinguishable from those of many relay cells, its morphology is typical of 'class 3' neurones (see Fig. 1 legend), which are widely believed to be interneurones (but see ref. 12). Here, we refer to the cell as a 'local circuit neurone', which allows for the possibility of a projection axon, rather than as an 'interneurone', a term that commonly excludes a projection axon. We find that the labelled cell has a myelinated axon, but that the axon loses its myelin within 50 microns of the soma and has not yet been traced further. The dendrites of the labelled cell possess presynaptic terminals that act as intrinsic sources of inhibition on geniculate relay cells. We also characterize other morphological aspects of this inhibitory circuitry.  相似文献   

6.
Ganglion cell dendrites are presynaptic in catfish retina   总被引:2,自引:0,他引:2  
H M Sakai  K Naka  J E Dowling 《Nature》1986,319(6053):495-497
The retinal ganglion cells are third-order, spike-generating neurones whose axons transmit the output of the retina to the rest of the brain. It has long been believed that the dendrites of the retinal ganglion cells, like the dendrites of most other Golgi type I neurones, are only postsynaptic. Here we have studied the synapses made onto the ganglion cells in the catfish (Ictalurus punctatus), and we report that the distal dendrites of large-field ganglion cells make conventional chemical synapses onto other inner plexiform layer processes. We have also found that, more than 100 microns away from the cell perikaryon, the synapses made onto and by these ganglion cell dendrites are often tightly clustered. These synaptic clusters appear to be quite regularly spaced along the dendrites. Our results have important implications for the identification of ganglion cell dendrites within the inner plexiform layer as well as for the understanding of the ganglion cell response and receptive field generation.  相似文献   

7.
R E Marc  W L Liu 《Nature》1984,312(5991):266-269
Horizontal cells mediate lateral transmission of signals in the outer plexiform layer of the vertebrate retina, and are presumed to contribute to surround properties of photoreceptors and bipolar cells by chemical transmission. The cell bodies and dendrites of fish horizontal cells possess presynaptic specializations characteristic of conventional chemical synapses. Horizontal cell axon terminals have not so far been shown to contain presynaptic specializations nor have the targets of the somatic and dendritic synapses been fully characterized. Using electron microscope autoradiography of retinas labelled by high-affinity 3H-glycine uptake, we show here that goldfish horizontal cells make somatodendritic and axodendritic synapses on glycinergic interplexiform cells (Gly-IPCs) as apposed to dopaminergic interplexiform cells. Thus, horizontal cells have at least three postsynaptic targets: photoreceptors, bipolar cells and Gly-IPCs. Gly-IPCs may constitute a major alternative pathway for horizontal cell signals to reach the inner plexiform layer.  相似文献   

8.
M M Slaughter  R F Miller 《Nature》1983,303(5917):537-538
The bipolar cells of the vertebrate retina are the principal neuronal elements which transmit photoreceptor activity from the outer to the inner retina. An important function of the bipolars is to segregate photoreceptor input into independent ON and OFF channels which are subserved, respectively, by the depolarizing and hyperpolarizing bipolar subtypes. Ultrastructural and physiological observations suggest that chemical neurotransmission is the predominant means of bipolar input to the inner retina. Both ON and OFF bipolars apparently release excitatory transmitters. Histological studies with cytotoxic agents and physiological studies indicate that third-order neurones have excitatory amino acid receptors. In ON-OFF amacrine and ganglion cells, which receive input from both bipolars, ON and OFF excitation have a similar ionic basis, suggesting that the same transmitter may be released by both types of bipolars. We have now found that (+/-)cis-2,3-piperidine dicarboxylic acid (PDA), a new excitatory amino acid antagonist, blocks bipolar input to the inner retina and thus suggests that an excitatory amino acid is a bipolar cell transmitter.  相似文献   

9.
GAP-43在锦鲤荒漠沙蜥和雉鸡视网膜内分布的免疫组化研究   总被引:4,自引:0,他引:4  
GAP-43具有多种功能,主要与神经元轴突的生长、再生、神经递质的释放及膜泡的吞噬有关.本研究用免疫组织化学的方法观察了正常成年锦鲤、荒漠沙蜥和雉鸡视网膜内GAP-43分布.结果显示GAP-43主要分布在内网层,另外,在内核层、外网层、光感受器细胞层因动物不同也呈现不同的分布特点,而在节细胞层中3种动物均未发现GAP-43阳性染色.在锦鲤视网膜中GAP-43主要分布在内网层和内核层的无长突细胞;在荒漠沙蜥视网膜中GAP-43主要分布在内网层和外网层,在雉鸡视网膜中GAP-43主要分布在内网层、外网层、外核层和光感受器外节,其中在雉鸡视网膜外核层和光感受器外节中发现阳性分布是在脊椎动物此层发现GAP-43的首次报道.  相似文献   

10.
G A Mignery  T C Südhof  K Takei  P De Camilli 《Nature》1989,342(6246):192-195
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) serves as an intracellular second messenger for several neurotransmitters, hormones and growth factors by initiating calcium release from intracellular stores. A cerebellar Ins(1,4,5)P3 receptor has been characterized biochemically and shown by immunocytochemistry to be present in intracellular membranes in Purkinje cells. We show that a previously described Purkinje-cell messenger RNA encodes a protein of relative molecular mass 260,000 (260 K) with the same properties as the cerebellar Ins(1,4,5)P3 receptor. Its sequence is partially homologous to the skeletal muscle ryanodine receptor. By immunocytochemistry and electron microscopy the protein is shown to be present in all parts of the endoplasmic reticulum, including those that extend into axon terminals and dendritic spines. Our results indicate that gated calcium release from intracellular stores in muscle and Purkinje cells uses similar calcium-channel proteins localized in analogous intracellular compartments. This implies that the intracellular calcium stores in the endoplasmic reticulum of neurons extend into presynaptic terminals and dendritic spines where they may play a direct role in regulating the efficacy of neurotransmission.  相似文献   

11.
用胞内注射辣根过氧化物酶(HRP)的方法标记中华宽体金线蛭AP神经元。透射电镜下观察到神经节的内、外囊中的平滑肌细胞膜间、以及标记AP神经元的轴突末梢膜与神经节中平滑肌细胞间的连接。通常,单个的平滑肌细胞散布在神经节的内、外囊中,分别为椭圆形和梭形。平滑肌细胞含粗、细两种肌丝,有密斑,具有许多突起。神经节外囊中平滑肌细胞的细胞质中央区有许多糖元颗粒和一些线粒体及粗面内质网;两个嵌合的平滑肌细胞膜间距为13.1~26.1nm。首次观察到神经元的轴突末梢与外囊内的平滑肌细胞形成化学突触,突触裂隙10.2~15.3nm;AP标记末梢膜与外囊平滑肌细胞膜之间的间距为2.0~2.5nm,相当于缝隙连接的并置膜结构。  相似文献   

12.
Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus   总被引:37,自引:0,他引:37  
Bergles DE  Roberts JD  Somogyi P  Jahr CE 《Nature》2000,405(6783):187-191
Fast excitatory neurotransmission in the central nervous system occurs at specialized synaptic junctions between neurons, where a high concentration of glutamate directly activates receptor channels. Low-affinity AMPA (alpha-amino-3-hydroxy-5-methyl isoxazole propionic acid) and kainate glutamate receptors are also expressed by some glial cells, including oligodendrocyte precursor cells (OPCs). However, the conditions that result in activation of glutamate receptors on these non-neuronal cells are not known. Here we report that stimulation of excitatory axons in the hippocampus elicits inward currents in OPCs that are mediated by AMPA receptors. The quantal nature of these responses and their rapid kinetics indicate that they are produced by the exocytosis of vesicles filled with glutamate directly opposite these receptors. Some of these AMPA receptors are permeable to calcium ions, providing a link between axonal activity and internal calcium levels in OPCs. Electron microscopic analysis revealed that vesicle-filled axon terminals make synaptic junctions with the processes of OPCs in both the young and adult hippocampus. These results demonstrate the existence of a rapid signalling pathway from pyramidal neurons to OPCs in the mammalian hippocampus that is mediated by excitatory, glutamatergic synapses.  相似文献   

13.
Experimentally induced alteration in the polarity of developing neurons   总被引:5,自引:0,他引:5  
C G Dotti  G A Banker 《Nature》1987,330(6145):254-256
Despite the great diversity of shapes exhibited by different classes of nerve cells, nearly all neurons share one feature in that they have a single axon and several dendrites. The two types of processes differ in their morphology, in their rate of growth, in the macromolecular composition of their cytoskeletons and surface membranes, and in their synaptic polarity. When hippocampal neurons are dissociated from the embryonic brain and cultured, they reproducibly establish this basic form with a single axon and several dendrites, despite the absence of any spatially organized environmental cues, and without the need for cell to cell contact. We have cut the axons of young hippocampal neurons within a day of their development: in some cases the initial axon regenerated, but more frequently one of the other processes, which if undisturbed would have become a dendrite, instead became the axon. Frequently the stump of the original axon persisted following the transection and subsequently became a dendrite. Evidently the neuronal processes that first develop in culture have the capacity to form either axons or dendrites. The acquisition of axonal characteristics by one neuronal process apparently inhibits the others from becoming axons, so they subsequently become dendrites.  相似文献   

14.
Fuerst PG  Koizumi A  Masland RH  Burgess RW 《Nature》2008,451(7177):470-474
To establish functional circuitry, retinal neurons occupy spatial domains by arborizing their processes, which requires the self-avoidance of neurites from an individual cell, and by spacing their cell bodies, which requires positioning the soma and establishing a zone within which other cells of the same type are excluded. The mosaic patterns of distinct cell types form independently and overlap. The cues that direct these processes in the vertebrate retina are not known. Here we show that some types of retinal amacrine cells from mice with a spontaneous mutation in Down syndrome cell adhesion molecule (Dscam), a gene encoding an immunoglobulin-superfamily member adhesion molecule, have defects in the arborization of processes and in the spacing of cell bodies. In the mutant retina, cells that would normally express Dscam have hyperfasciculated processes, preventing them from creating an orderly arbor. Also, their cell bodies are randomly distributed or pulled into clumps rather than being regularly spaced mosaics. Our results indicate that mouse DSCAM mediates isoneuronal self-avoidance for arborization and heteroneuronal self-avoidance within specific cell types to prevent fasciculation and to preserve mosaic spacing. These functions are analogous to those of Drosophila DSCAM (ref. 6) and DSCAM2 (ref. 7). DSCAM may function similarly in other regions of the mammalian nervous system, and this role may extend to other members of the mammalian Dscam gene family.  相似文献   

15.
建立了包含无长突细胞相互抑制网络的视网膜神经节细胞的三层网络模型,以验证李朝义等提出的非经典感受野可能源于无长突细胞相互抑制的假说,并探讨神经节细胞感受野的方位倾向性的可能机制.模拟结果表明,通过无长突细胞之间的相互抑制可以形成神经节细胞的非经典感受野.模型模拟了神经节细胞的中心区和大周边区的方位倾向性及其相互作用,结果提示神经节细胞的方位倾向性可能主要源于神经节细胞树突野的空间分布.  相似文献   

16.
The nuclear lamina is a meshwork of intermediate-type filaments   总被引:95,自引:0,他引:95  
U Aebi  J Cohn  L Buhle  L Gerace 《Nature》1986,323(6088):560-564
The nuclear lamina, a protein meshwork lining the nucleoplasmic surface of the inner nuclear membrane, is thought to provide a framework for organizing nuclear envelope structure and an anchoring site at the nuclear periphery for interphase chromatin. In several higher eukaryotic cells, the lamina appears to be a polymer comprised mainly of one to three immunologically related polypeptides of relative molecular mass (Mr) 60,000-75,000 (60-70K) termed lamins. Three lamins (A, B, and C) are typically present in mammalian somatic cells. Previous studies on nuclear envelopes of rat liver and Xenopus oocytes suggested that the lamina has a fibrillar or filamentous substructure. Interestingly, protein sequences recently deduced for human lamins A and C from complementary DNA clones indicate that both of these polypeptides contain a region of approximately 350 amino acids very similar in sequence to the coiled-coil alpha-helical rod domain that characterizes all intermediate-type filament (IF) proteins. Here we analyse the supramolecular organization of the native nuclear lamina and the structure and assembly properties of purified lamins, and show that the lamins constitute a previously unrecognized class of IF polypeptides.  相似文献   

17.
A A Herrera  A D Grinnell 《Nature》1980,287(5783):649-651
It has been postulated that the success with which a motor nerve terminal competes for synaptic connections or the ability of an axon to maintain sprouts may depend on the support each terminal receives from its coma, presumably in the form of some substance(s) synthesized there. The support received by each terminal may in turn depend on the total number of terminals maintained by that soma, namely, motor unit size. We show here that when motor unit size is experimentally decreased, transmitter release from the terminals is markedly enhanced. This is consistent with the view that the extent of support from the soma may also influence the effectiveness of synaptic transmission.  相似文献   

18.
J R Slack  W G Hopkins  M N Williams 《Nature》1979,282(5738):506-507
When disease or injury causes partial loss of innervation from a muscle, the remaining axons sprout and form new connections to the denervated muscle fibres. Sprouting can occur in two ways: from axon terminals (terminal sprouting) or from the intramuscular axons themselves, probably from the nodes of Ranvier (collateral sprouting). Terminal sprouting has been induced experimentally using various methods, including partial denervation, nerve conduction block and nerve transmission block. A common factor in the induction of terminal sprouting seems to be changes in the surface membrane of muscle fibres; these changes and terminal sprouting are prevented by direct stimulation of the muscle. Collateral sprouting has been induced only by partial denervation and is not prevented by direct stimulation. This has been taken as evidence for an earlier suggestion that products of nerve or axon degeneration may be a direct stimulus for collateral sprouting. We report here that axon degeneration products alone are probably not the stimulus for collateral sprouting.  相似文献   

19.
Ludwig M  Sabatier N  Bull PM  Landgraf R  Dayanithi G  Leng G 《Nature》2002,418(6893):85-89
Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and may thus elicit secretion from both compartments. Here, we show that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca(2+) induce oxytocin release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals. Conversely, electrical activity in the cell bodies can cause the secretion of oxytocin from nerve terminals with little or no release from the dendrites. Finally, mobilization of intracellular Ca(2+) can also prime the releasable pool of oxytocin in the dendrites. This priming action makes dendritic oxytocin available for release in response to subsequent spike activity. Priming persists for a prolonged period, changing the nature of interactions between oxytocin neurons and their neighbours.  相似文献   

20.
L Havton  J O Kellerth 《Nature》1987,325(6106):711-714
Axons in the central nervous system (CNS) of mammals do not normally regrow if they are cut, which severely limits restoration of function after injury. We have studied the reactions of adult cat spinal alpha-motoneurons after chronic transection of their axons in the periphery by labelling single cells with horseradish peroxidase. Twelve weeks after the operation, about a third of the axotomized cells had developed a 'supernumerary' axon originating from the cell-body region. These supernumerary axons had variable trajectories and termination fields in the ipsilateral spinal cord but generally anomalous projections. Ultrastructural examination shows that they give rise to boutons that form morphologically normal synaptic contacts with neuronal profiles, although they contain dense-cored vesicles not normally seen in central terminals of alpha-motor axons. We conclude that axotomized neurons in the mammalian CNS may be able to form new synaptic contacts by means of supernumerary axons in the absence of local damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号