首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过磷酸活化法将毛竹废料制备成活性炭,再利用硝酸钴高温分解的氧化钴来对其二次活化改性。考察了其制备和改性工艺。研究确定活性炭的最佳制备条件为:磷酸浓度80%,浸渍比为6∶17 g/g,活化时间为2.5 h,活化温度为550℃,产品对亚甲基蓝溶液的脱色力值为650 mL/g。活性炭的适宜改性条件为:用质量分数为7.5%的硝酸钴水溶液按1.5∶5 g/mL浸渍比浸渍改性90 min,并在400℃焙烧3 h。产品对亚甲基蓝溶液的脱色力值为1 150 mL/g,与未改性产品相比较,提高了76.92%。  相似文献   

2.
一水硬铝石矿活化焙烧工艺研究   总被引:1,自引:0,他引:1  
利用马弗炉对我国一水硬铝石矿进行了活化焙烧的实验研究,以降低拜耳法溶出的温度.研究了焙烧温度、焙烧时间等因素对铝土矿的溶出性能的影响,将活化焙烧矿的溶出性能与原矿的溶出性能进行了对比.利用SEM技术对活化焙烧矿的微观形貌进行表征.实验结果表明:合适的活化焙烧工艺条件为焙烧温度585℃,焙烧时间60 min.在此焙烧条件下,当达到最大溶出率时,焙烧矿的溶出温度较原矿下降了40℃.  相似文献   

3.
S2O2-8/ZrO2固体超强酸催化剂上的正戊烷反应性能研究   总被引:1,自引:0,他引:1  
考察了焙烧温度、活化温度等因素对S2O 2-8/ZrO2(PSZ)固体超强酸常温下催化正戊烷反应性能的影响,利用色谱-质谱( GC-MS)、傅里叶红外(FT-IR)、原位X-射线粉末衍射(XRD)、比表面测定(BET)、含硫量分析等手段研究了正戊烷反应产物、催化剂晶型变化及表面酸位类型等. 结果表明,焙烧温度和活化温度是影响催化反应活性的关键. 焙烧温度在723~973 K制备的PSZ固体超强酸催化 剂,308 K下对正戊烷均具有催化反应活性,823 K焙烧样品活性最佳;对于最佳焙烧温度样 品,活化温度在373-673 K之间,均具有较高的反应活性,活化温度为523 K时活性最佳. 异构化表观活化能为41.7 Kj/mol. 整个反应大致可以分为3个阶段反应初期,产物均为异 戊烷,表明发生的是异构化反应;反应中期,异构化反应速率减低,产物中出现异丁烷,表 明异构化反应和裂解反应同时发生;反应后期,异构化产物明显减少,异丁烷和己烷异构体 明显增加,表明裂解反应已经取代异构化反应,成为反应的主流. 适宜的焙烧温度使ZrO2 晶化是形成超强酸的必要条件;合适的活化温度影响酸位类型,523 K下活化的样品主要为 强Brnsted酸位,同时有少量的强Lewis酸位存在.  相似文献   

4.
考察了焙烧温度、活化温度等因素对S2O8^2-/ZrO2(PSZ)固体超强酸常温下催化正戊烷反应性能的影响,利用色谱-质谱(GC-MS)、傅里叶红外(FT-IR)、原位X-射线粉末衍射(XRD)、此表面测定(BET)、含硫量分析等手段研究了正戊烷反应产物、催化剂晶型变化及表面酸位类型等。结果表明,焙烧温度和活化温度是影响催反应活性的关键。焙烧温度在723-973K制备的PSZ固体超强酸催化剂,308K下对正戊烷均具有催化反应活性,823K焙烧样品活性最佳;对于最佳焙烧温度样品,活化温度在373-673K之间,均具有较高的反应活性,活化温度为523K时活性最佳。异构化表观活化能为41.7kJ/mol。整个反应大致可以分为3个阶段:反应初期,产物均为异戊烷,表明发生的是异构化反应;反应中期,异构化反应速率减低,产物中出现异丁烷,表明异构化反应和裂解反应同时发生;反应后期,异构化产物明显减少,异丁烷和己烷异构体明显增加,表明裂解反应已经取代异构化反应,成为反应的主流。适宜的焙烧温度使ZrO2晶化是形成超强酸的必要条件;合适的活化温度影响酸位类型,523K下活化的样品主要为强Bronsted酸位,同时有少量的强Lewis酸位存在。  相似文献   

5.
以乙酸铜为铜源,利用浸渍法制备了CuOx/活性炭催化剂,用X-射线衍射(XRD)、扫描电子显微镜(SEM)、热失重(TGA)、N2吸附-脱附等方法表征了催化剂.以苯酚过氧化氢羟基化反应为模型反应,研究了焙烧温度对CuOx/活性炭催化性能的影响,并以最佳焙烧温度下制得的CuOx/活性炭为催化剂,对苯酚羟基化反应的工艺进行了简单讨论.结果表明,高温下,部分氧化铜被还原为氧化亚铜,提高了CuOx/活性炭的催化活性.450 ℃焙烧5 h的CuOx/活性炭具有最高的催化活性.以0.05 g CuOx/AC-450为催化剂,50 mL水为溶剂,1.88 g苯酚,2 mL 30%的过氧化氢为氧化剂,反应时间为60 min,反应温度为70 ℃,苯酚转化率为45.35%,邻苯二酚的选择性为24.11%,对苯二酚的选择性为67.13%.  相似文献   

6.
将线型酚醛树脂与硝酸钙均匀混合 ,利用乳化法 ,经炭化和活化成功制备出酚醛树脂基球形活性炭 ,利用氮吸附法对所制备活性炭的孔结构进行了研究。结果表明 ,添加钙加快了球形炭的活化速率 ;含钙球形活性炭的微孔比表面积减小 ,但是其孔径分布变化不大 ;含钙球形活性炭具有3~ 4nm之间的优势中孔以及较大的中孔率 ;随着活化烧失率的增大 ,4nm以上的中孔继续增多而 3~ 4nm之间的中孔变化不明显 ,表明含钙球形活性炭的中孔有不同的形成机理。  相似文献   

7.
在活性炭自燃及氧化燃烧动力学的理论基础上,通过对4种不同生产阶段的煤基活性炭进行氮吸附实验、SEM实验和热重实验,研究了活性炭生产阶段孔隙结构的变化情况,并运用热重分析方法对活性炭从30℃到800℃之间的氧化燃烧过程进行分析。结果表明:在煤基活性炭由压块料到活化料生产过程中,样品中挥发分与水分的含量呈逐渐降低趋势,氢元素与氧元素含量大量减少,说明活性炭中的活性小分子逐渐减少;活化料活性炭的孔隙结构最发达,比表面积最大,与氧气反应的速率最快,氧化燃烧性质与其它3种活性炭有显著不同; 4种活性炭样品起始失重温度和着火点温度均是先升高后降低,炭化料总放热量最大,压块料和活化料居中,炭化粉料最小,说明生产过程中炭化工艺惰化了活性炭的氧化性能,而活化工艺又使得活性炭氧化性能提高,其自燃危险性由高到低排序为活化料、压块料、炭化料、炭化粉料活性炭。  相似文献   

8.
随着食品、医药工业的发展,对活性炭的需求量不断增长。但由于活性炭生产耗煤量较大,废气废水污染严重造成有的工厂缺燃料不能正常生产、有的工厂因污染而被罚款,影响活性炭生产发展。省林科所和湖州市塘南公社北港砖瓦厂,利用土砖瓦窑烧制砖瓦和废活性炭再活  相似文献   

9.
废植物炭制活性炭的研究   总被引:11,自引:0,他引:11  
研究废植物炭制活性炭的可行性及效果,探讨了以水蒸汽为活化介质时活化工艺条件对活性炭吸附性能的影响,确定了最佳活化工艺条件,并对活性炭的孔结构进行了分析探讨。结果表明,利用废植物炭制活性炭是可行的,得到的活性炭具有较高的吸附性能和丰富结构。废植物炭的种类和灰发含量决定其活性炭的吸附性能。活化后活性炭表面积的增加主要源于其微孔表面积的增加。  相似文献   

10.
在本实验中,采用正交实验方法组织实验,并进一步研究确定活性炭的活化所用的酸、碱浓度及活性炭的活化时间对砷的去除率的影响.实验研究结果表明,利用一定浓度的盐酸活化改性活性炭后对砷的去除率有一定的影响,氢氧化钠改性的活性炭对砷的去除率的影响不大.而活性炭在酸碱活化剂中的活化时间对砷的去除率有一定的影响,砷的去除率随着活性炭的活化时间的增长而逐渐增加,然后趋于平衡.  相似文献   

11.
K2CO3活化法制备椰壳活性炭   总被引:6,自引:0,他引:6  
以椰壳炭化料为原料,采用K2CO3活化法在不同操作条件下制备椰壳活性炭,探讨了K2CO3活化实验中K2CO3与炭化料质量比、活化时间和活化温度对活性炭得率、活性炭亚甲蓝吸附值和苯酚吸附值的影响.实验结果表明,K2CO3与炭化料质量比和活化温度是K2CO3活化法制备椰壳活性炭最重要的影响因素.综合考虑活性炭的得率和活性炭吸附性能受活化操作参数的影响规律,探讨了K2CO3活化法制备椰壳活性炭的最优操作参数,得到了实验范围内的最佳5-艺条件为:K2CO3与炭化料的质量比为2:1,活化温度为800℃左右,活化时间为120min.  相似文献   

12.
采用浸渍法制备固体磷酸催化剂,以汽油氧化脱硫反应为催化模型,研究了焙烧温度、浸渍时间及载体对所制备的固体磷酸催化剂的催化活性的影响.结果表明,硅藻土磷酸催化剂在汽油脱硫反应中的催化活性与焙烧温度有关;活性炭磷酸催化剂在汽油氧化脱硫中具有较好的催化活性.在酸量为5.613 mmol/g时,催化剂的催化活性最高.  相似文献   

13.
用硝酸对活性炭进行去灰分处理,并用水蒸气进行二次活化,将活性炭制成电极,在电吸附装置中进行电吸附测试。结果表明,二次活化可以提高活性炭的比表面积和孔容,并使得活性炭的单位吸附量从2.92 mg/g提高到4.55 mg/g。活化效果受活化时间和活化温度共同影响,活化1h 的效果最好,提高活化温度有利于提高吸附性能。  相似文献   

14.
生物质活性炭对模拟烟气汞吸附特性的实验研究   总被引:1,自引:1,他引:0  
采用氯化锌作为活化剂制备生物质活性炭,在不同的氯化锌质量分数、活化时间、活化温度条件下,对不同的生物质原料进行活化、碳化,以制备所得活性炭对亚甲基蓝的脱色量为指标,进行正交设计优化.利用吸附性能较好的生物质活性炭,对其进行汞吸附实验.结果表明,生物质活性炭制备的优化工艺条件为:氯化锌质量分数50%,活化时间1.5h,活化温度600℃.在此条件下,毛豆杆活性炭对亚甲基蓝的脱色量为0.15mg/g,对汞4h的吸附量为0.015mg,穿透率为5.30%.由此得出,受原料、活化剂质量分数、活化时间和活化温度等影响,各种活性炭对亚甲基蓝的吸附效率都不同,毛豆杆活性炭对模拟烟气中汞的吸附效果最好,这与其微孔极发达有关.  相似文献   

15.
磷酸盐活化法制备椰壳纤维基活性炭研究   总被引:3,自引:0,他引:3  
采用正交试验设计实验方案,以椰纤维为原料,经炭化、活化等处理,研究磷酸盐活化制备高比表面积活性炭的实验方案与工艺条件,得到比表面积高,孔隙发达,吸附效果优异的活性炭.考查了活化剂配比、活化温度、活化时间、升温速率等因素对活性炭吸附性能及产率的影响,得到最佳的活化方案与工艺条件.并在实验的基础上探讨了活性炭的活化机理.  相似文献   

16.
生物质活性炭作为载体制备产氢催化剂可应用于便携式氢燃料电池领域,解决氢燃料电池动力不足问题,能变废为宝,具有很好的环境、社会和经济效益.采用花生壳生物质废弃物为原料,在流化床中经炭化、活化制备成生物质活性炭,并将其作为载体负载Co-B催化剂.将该炭基Co-B催化剂用于催化NaBH4水解制氢,考察了不同炭化时间、炭化温度、活化时间、活化温度等因素对生物质炭基Co-B催化剂的产氢性能影响.利用SEM和EDX对活性炭和催化剂的形貌及结构进行表征分析.结果表明:炭化温度为400℃、炭化时间1h,活化温度800℃,活化时间为2h时所制得活性炭基催化剂的性能远远优于商业活性炭基Co-B产氢催化剂,其平均产氢速率可以达到3 200mL·min~(-1)·g~(-1) Co-B催化剂.  相似文献   

17.
该文综述了利用城市污水厂剩余污泥制备活性炭的方法,包括物理活化法和化学活化法。在此基础上分别整理了活化/热解温度、活化剂种类和浓度、停留时间等因素对污泥基活性炭结构特征和吸附性能的影响,并整理了污泥基活性炭在环境中的应用。  相似文献   

18.
以晋城无烟煤为原料,先经浮选和酸洗脱灰,得到灰分1.2%的超低灰无烟煤,再将其与活化剂KOH按比例混合、粘结成型,并经活化处理制备高比表面积活性炭。主要考查了碱炭比、活化温度和活化时间对活性炭比表面积及收率的影响。结果表明,晋城超低灰无烟煤制备高比表面积活性炭的最佳工艺条件为:碱炭比5∶1,活化温度800℃、活化时间1 h,活性炭的BET比表面积为1 800.71 m2/g,孔径大小分布于0.3~5 nm之间,以微孔为主。  相似文献   

19.
物理活化法制备椰壳活性炭研究   总被引:5,自引:0,他引:5  
以椰壳炭化料为原料采用水蒸气活化法在不同操作条件下制备得到各种椰壳活性炭.分别研究了水蒸气活化实验中活化时间和活化温度对活性炭的得率、活性炭碘值和苯酚吸附值的影响关系.实验结果表明,活化温度是水蒸气活化法制备椰壳活性炭的最重要的影响因素.在实验范围内,水蒸气活化法制备椰壳活性炭时,宜将活化温度选择在850℃左右,活化时间为120min.  相似文献   

20.
周颖 《石河子科技》2015,(3):38-40,43
选用新疆独山子地区石化厂石油焦作为原材料,用KOH作为活化剂,采用化学活化法制备超级活性炭。制取过程中分别列举了碱炭比值、活化作用时间、活化维持温度等工艺参数对活性炭碘吸附值的影响;利用液氮吸附法对活性炭的比表面积、孔容孔径分布进行了表征。结果表明:在制备超级活性炭的过程中,碱炭比、活化温度和活化时间等条件起到关键作用,当碱炭比为4,活化温度为800℃时,活化时间为1.5h时,可以制得比表面积为2 411m2/g,孔容为1.11cm3/g,碘吸附值为2 536mg/g的石油焦基活性炭。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号