首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants belonging to the legume family develop nitrogen-fixing root nodules in symbiosis with bacteria commonly known as rhizobia. The legume host encodes all of the functions necessary to build the specialized symbiotic organ, the nodule, but the process is elicited by the bacteria. Molecular communication initiates the interaction, and signals, usually flavones, secreted by the legume root induce the bacteria to produce a lipochitin-oligosaccharide signal molecule (Nod-factor), which in turn triggers the plant organogenic process. An important determinant of bacterial host specificity is the structure of the Nod-factor, suggesting that a plant receptor is involved in signal perception and signal transduction initiating the plant developmental response. Here we describe the cloning of a putative Nod-factor receptor kinase gene (NFR5) from Lotus japonicus. NFR5 is essential for Nod-factor perception and encodes an unusual transmembrane serine/threonine receptor-like kinase required for the earliest detectable plant responses to bacteria and Nod-factor. The extracellular domain of the putative receptor has three modules with similarity to LysM domains known from peptidoglycan-binding proteins and chitinases. Together with an atypical kinase domain structure this characterizes an unusual receptor-like kinase.  相似文献   

2.
T Hunter  N Ling  J A Cooper 《Nature》1984,311(5985):480-483
The receptor for epidermal growth factor (EGF) is a 170,000-180,000 molecular weight single-chain glycoprotein of 1,186 amino acids. Its sequence suggests that it has an external EGF-binding domain, formed by the NH2-terminal 621 amino acids, linked to a cytoplasmic region by a single membrane-spanning segment. In the cytoplasmic portion, starting 50 residues from the membrane, there is a 250-residue stretch similar to the catalytic domain of the src gene family of retroviral tyrosine protein kinases, and, indeed, a tyrosine-specific protein kinase activity intrinsic to the receptor is stimulated when EGF is bound. Increased tyrosine phosphorylation of cellular proteins, detected in A431 cells following EGF binding, may be important in the mitogenic signal pathway. Tumour promoters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA), counteract this increase, as well as causing loss of a high affinity class of EGF binding sites. The major receptor for TPA has been identified as the serine/threonine-specific Ca2+/phospholipid-dependent diacylglycerol-activated protein kinase, protein kinase C. By substituting for diacylglycerol, TPA stimulates protein kinase C. Protein kinase C phosphorylates purified EGF receptor at specific sites, and this reduces EGF-stimulated tyrosine protein kinase activity. TPA treatment of A431 cells increases serine and threonine phosphorylation of the EGF receptor at the same sites, which suggests that the reduction of EGF receptor kinase activity in TPA-treated cells is a consequence of the receptor's phosphorylation by the kinase. We have attempted to identify these phosphorylation sites and show here that protein kinase C phosphorylates threonine 654 in the human EGF receptor. This threonine is in a very basic sequence nine residues from the cytoplasmic face of the plasma membrane in the region before the protein kinase domain; it is thus in a position to modulate signalling between this internal domain and the external EGF-binding domain.  相似文献   

3.
H Riedel  T J Dull  J Schlessinger  A Ullrich 《Nature》1986,324(6092):68-70
The cell surface receptors for insulin and epidermal growth factor (EGF) appear to share a common evolutionary origin, as suggested by structural similarity of cysteine-rich regions in their extracellular domains and a highly conserved tyrosine-specific protein kinase domain. Only minor similarity is found outside this catalytic domain, as expected for receptors that have different ligand specificities and generate different biological signals. The EGF receptor is a single polypeptide chain but the insulin receptor consists of distinct alpha and beta subunits that function as an alpha 2 beta 2 heterotetrameric receptor complex. Provoked by this major structural difference in two receptors that carry out parallel functions, we have designed a chimaeric receptor molecule comprising the extracellular portion of the insulin receptor joined to the transmembrane and intracellular domains of the EGF receptor to investigate whether one ligand will activate the tyrosine kinase domain of the receptor for the other ligand. We show here that the EGF receptor kinase domain of the chimaeric protein, expressed transiently in simian cells, is activated by insulin binding. This strongly suggests that insulin and EGF receptors employ closely related or identical mechanisms for signal transduction across the plasma membrane.  相似文献   

4.
Phosphorylation of c-jun mediated by MAP kinases   总被引:142,自引:0,他引:142  
  相似文献   

5.
Y Ben-Neriah  A R Bauskin 《Nature》1988,333(6174):672-676
Tyrosine-specific phosphorylation of proteins is a key to the control of diverse pathways leading to cell growth and differentiation. The protein-tyrosine kinases described to date are either transmembrane proteins having an extracellular ligand binding domain or cytoplasmic proteins related to the v-src oncogene. Most of these proteins are expressed in a wide variety of cells and tissues; few are tissue-specific. Previous studies have suggested that lymphokines could mediate haematopoietic cell survival through their action on glucose transport, regulated in some cells through the protein-tyrosine kinase activity of the insulin receptor. We have investigated the possibility that insulin receptor-like genes are expressed specifically in haematopoietic cells. Using the insulin receptor-related avian sarcoma oncogene v-ros as a probe, we have isolated and characterized the complementary DNA of a novel gene, ltk (leukocyte tyrosine kinase). The ltk gene is expressed mainly in leukocytes, is related to several tyrosine kinase receptor genes of the insulin receptor family and has unique structural properties: it apparently encodes a transmembrane protein devoid of an extracellular domain. Two candidate ltk proteins have been identified with antibodies in the mouse thymus, and have properties indicating that they are integral membrane proteins. These features suggest that ltk could be a signal transduction subunit for one or several of the haematopoietic receptors.  相似文献   

6.
K K Kim  H Yokota  S H Kim 《Nature》1999,400(6746):787-792
The bacterial chemotaxis receptors are transmembrane receptors with a simple signalling pathway which has elements relevant to the general understanding of signal recognition and transduction across membranes, how signals are relayed between molecules in a pathway, and how adaptation to a persistent signal is achieved. In contrast to many mammalian receptors which signal by oligomerizing upon ligand binding, the chemotaxis receptors are dimeric even in the absence of their ligands, and their signalling does not depend on a monomer-dimer equilibrium. Bacterial chemotaxis receptors are composed of a ligand-binding domain, a transmembrane domain consisting of two helices TM1 and TM2, and a cytoplasmic domain. All known bacterial chemotaxis receptors have a highly conserved cytoplasmic domain, which unites signals from different ligand domains into a single signalling pathway to flagella motors. Here we report the crystal structure of the cytoplasmic domain of a serine chemotaxis receptor of Escherichia coli, which reveals a 200 A-long coiled-coil of two antiparallel helices connected by a 'U-turn'. Two of these domains form a long, supercoiled, four-helical bundle in the cytoplasmic portion of the receptor.  相似文献   

7.
Silencing of TGF-beta signalling by the pseudoreceptor BAMBI.   总被引:15,自引:0,他引:15  
Members of the transforming growth factor-beta (TGF-beta) superfamily, including TGF-beta, bone morphogenetic proteins (BMPs), activins and nodals, are vital for regulating growth and differentiation. These growth factors transduce their signals through pairs of transmembrane type I and type II receptor kinases. Here, we have cloned a transmembrane protein, BAMBI, which is related to TGF-beta-family type I receptors but lacks an intracellular kinase domain. We show that BAMBI is co-expressed with the ventralizing morphogen BMP4 (refs 5, 6) during Xenopus embryogenesis and that it requires BMP signalling for its expression. The protein stably associates with TGF-beta-family receptors and inhibits BMP and activin as well as TGF-beta signalling. Finally, we provide evidence that BAMBI's inhibitory effects are mediated by its intracellular domain, which resembles the homodimerization interface of a type I receptor and prevents the formation of receptor complexes. The results indicate that BAMBI negatively regulates TGF-beta-family signalling by a regulatory mechanism involving the interaction of signalling receptors with a pseudoreceptor.  相似文献   

8.
Although most higher plants establish a symbiosis with arbuscular mycorrhizal fungi, symbiotic nitrogen fixation with rhizobia is a salient feature of legumes. Despite this host range difference, mycorrhizal and rhizobial invasion shares a common plant-specified genetic programme controlling the early host interaction. One feature distinguishing legumes is their ability to perceive rhizobial-specific signal molecules. We describe here two LysM-type serine/threonine receptor kinase genes, NFR1 and NFR5, enabling the model legume Lotus japonicus to recognize its bacterial microsymbiont Mesorhizobium loti. The extracellular domains of the two transmembrane kinases resemble LysM domains of peptidoglycan- and chitin-binding proteins, suggesting that they may be involved directly in perception of the rhizobial lipochitin-oligosaccharide signal. We show that NFR1 and NFR5 are required for the earliest physiological and cellular responses to this lipochitin-oligosaccharide signal, and demonstrate their role in the mechanism establishing susceptibility of the legume root for bacterial infection.  相似文献   

9.
J L Guan  D Shalloway 《Nature》1992,358(6388):690-692
Increasing evidence indicates that the integrin family of cell adhesion receptors can transduce biochemical signals from the extracellular matrix to the cell interior to modulate cell growth and differentiation. We have shown that integrin/ligand interactions can trigger tyrosine phosphorylation of a protein of M(r) 120,000 (pp120), so it is possible that signal transduction by integrins might involve activation of intracellular protein tyrosine kinases as an early event in cell binding to the extracellular matrix. Here we report that pp120 is identical to the focal adhesion-associated protein tyrosine kinase pp125FAK (refs 3, 4). We show that tyrosine phosphorylation of this protein is modulated both by cell adhesion and transformation by pp60v-src, and that these changes in phosphorylation are correlated with increased pp125FAK tyrosine kinase activity. A model is proposed to relate these findings to the molecular basis of anchorage-independent growth of transformed cells.  相似文献   

10.
JR James  RD Vale 《Nature》2012,487(7405):64-69
A T-cell-mediated immune response is initiated by the T-cell receptor (TCR) interacting with peptide-bound major histocompatibility complex (pMHC) on an infected cell. The mechanism by which this interaction triggers intracellular phosphorylation of the TCR, which lacks a kinase domain, remains poorly understood. Here, we have introduced the TCR and associated signalling molecules into a non-immune cell and reconstituted ligand-specific signalling when these cells are conjugated with antigen-presenting cells. We show that signalling requires the differential segregation of a phosphatase and kinase in the plasma membrane. An artificial, chemically controlled receptor system generates the same effect as TCR–pMHC, demonstrating that the binding energy of an extracellular protein–protein interaction can drive the spatial segregation of membrane proteins without a transmembrane conformational change. This general mechanism may extend to other receptors that rely on extrinsic kinases, including, as we demonstrate, chimaeric antigen receptors being developed for cancer immunotherapy.  相似文献   

11.
B Dickson  F Sprenger  D Morrison  E Hafen 《Nature》1992,360(6404):600-603
Specification of the R7 cell fate in the developing Drosophila eye requires activation of the Sevenless (Sev) receptor tyrosine kinase, located on the surface of the R7 precursor cell, by its interaction with the Boss protein, expressed on the surface of the neighbouring R8 cell. Four genes that participate in the intracellular transmission of this signal have so far been identified and molecularly characterized: Ras1, Sos, Gap1 and sina (refs 4-8). The Drosophila homologue of the mammalian Raf-1 serine/threonine kinase, which has been implicated in signal transduction pathways activated by many receptor tyrosine kinases (reviewed in refs 9 and 10), is encoded by the raf locus (also known as l(1)polehole, Draf-1 or Draf). Here we show that the Drosophila Raf serine/threonine kinase also plays a crucial role in the R7 pathway: the response to Sev activity is dependent on raf function, and a constitutively activated Raf protein can induce R7 cell development in the absence of sev function. We also present genetic evidence suggesting that Raf acts downstream of Ras1 and upstream of Sina in this signal transduction cascade.  相似文献   

12.
Thrombopioetin (TPO), the critical regulator of platelet production, acts by binding to its cell surface receptor, c-Mpl. Yeast two-hybrid screening was performed to isolate the proteins interacting with the cytoplasmic domain of c-Mpl. 48 positive clones were isolated from 5 × 106 independent transformants. The results of sequence analysis demonstrate that they represent 13 different protein encoding sequences. Among them there are a partial coding sequence of serine/threonine protein kinase SGK (serum and glucocorticoid-inducible kinase) and 14-3-3 theta protein partial coding sequence. GST-pull-down assay and co-immunoprecipitation in mammal cells have confirmed the interaction between these two proteins and c-Mpl. By constructing a series of deleted c-Mpl cytoplasmic domain, the interaction region in c-Mpl cytoplasmic tail was localized in amino acids 523–554. At the same time, the directed interaction between SGK and 14-3-3 proteins also has been verified by yeast two-hybrid assay. The present note is the first time to report that two proteins act with c-Mpl at the same time and put forward that SGK and 14-3-3 protein may be involved in the serine/threonine phosphorylation mechanism for signal transduction.  相似文献   

13.
The recognition of microbial pathogens by the innate immune system involves Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns. Different TLRs recognize different pathogen-associated molecular patterns, with TLR-4 mediating the response to lipopolysaccharide from Gram-negative bacteria. All TLRs have a Toll/IL-1 receptor (TIR) domain, which is responsible for signal transduction. MyD88 is one such protein that contains a TIR domain. It acts as an adapter, being involved in TLR-2, TLR-4 and TLR-9 signalling; however, our understanding of how TLR-4 signals is incomplete. Here we describe a protein, Mal (MyD88-adapter-like), which joins MyD88 as a cytoplasmic TIR-domain-containing protein in the human genome. Mal activates NF-kappaB, Jun amino-terminal kinase and extracellular signal-regulated kinase-1 and -2. Mal can form homodimers and can also form heterodimers with MyD88. Activation of NF-kappaB by Mal requires IRAK-2, but not IRAK, whereas MyD88 requires both IRAKs. Mal associates with IRAK-2 by means of its TIR domain. A dominant negative form of Mal inhibits NF-kappaB, which is activated by TLR-4 or lipopolysaccharide, but it does not inhibit NF-kappaB activation by IL-1RI or IL-18R. Mal associates with TLR-4. Mal is therefore an adapter in TLR-4 signal transduction.  相似文献   

14.
植物盐胁迫的信号传导途径   总被引:2,自引:0,他引:2  
植物耐盐性研究具有重要意义.近年来,植物盐胁迫信号传导途径一直是植物耐盐性研究的热点.目前已阐明的盐胁迫信号传导途径有酵母和植物中的MAPK(mitogen-actirated protein kinase)途径、拟南芥中缓解离子胁迫的SOS(salt overIy sensitive)途径以及其他蛋白激酶参与的信号传导途径,其中包括钙依赖而钙调素不依赖的蛋白激酶、受体蛋白激酶、糖原合成酶的激酶和组蛋白激酶.因此,植物的耐盐性是个非常复杂的问题,可能是由多种信号分子参与的网络体系.大量转基因实验证明,信号传导途径中的某些组分可改善植物的耐盐性.因此,深入研究植物的盐胁迫信号传导是提高植物耐盐性的前提和基础.  相似文献   

15.
C Ellis  M Moran  F McCormick  T Pawson 《Nature》1990,343(6256):377-381
The critical pathways through which protein-tyrosine kinases induce cellular proliferation and malignant transformation are not well defined. As microinjection of antibodies against p21ras can block the biological effects of both normal and oncogenic tyrosine kinases, it is likely that they require functional p21ras to transmit their mitogenic signals. No biochemical link has been established, however, between tyrosine kinases and p21ras. We have identified a non-catalytic domain of cytoplasmic tyrosine kinases, SH2, that regulates the activity and specificity of the kinase domain. The presence of two adjacent SH2 domains in the p21ras GTPase-activating protein (GAP) indicates that GAP might interact directly with tyrosine kinases. Here we show that GAP, and two co-precipitating proteins of relative molecular masses 62,000 and 190,000 (p62 and p190) are phosphorylated on tyrosine in cells that have been transformed by cytoplasmic and receptor-like tyrosine kinases. The phosphorylation of these polypeptides correlates with transformation in cells expressing inducible forms of the v-src or v-fps encoded tyrosine kinases. Furthermore, GAP, p62 and p190 are also rapidly phosphorylated on tyrosine in fibroblasts stimulated with epidermal growth factor. Our results suggest a mechanism by which tyrosine kinases might modify p21ras function, and implicate GAP and its associated proteins as targets of both oncoproteins and normal growth factor receptors with tyrosine kinase activity. These data support the idea that SH2 sequences direct the interactions of cytoplasmic proteins involved in signal transduction.  相似文献   

16.
溶解素基序(LysM)是在多种蛋白质中普遍存在的结构域.植物LysM蛋白能够感知几丁质及其寡糖等分子配体,从而启动植物对病原菌的免疫反应.在水稻、拟南芥等植物免疫应答过程中,LysM蛋白作为一种重要的模式识别受体,通过不同形式的寡聚化,激活多种类受体胞质激酶及其下游的MAPK(mitogen activated protein kinase)级联反应传递信号.同时,蛋白质可逆磷酸化和蛋白质降解途径可以负调节LysM蛋白介导的防御信号转导.文章综述了植物免疫过程中LysM蛋白介导的信号转导分子机制.  相似文献   

17.
MAP2 kinase and 70K S6 kinase lie on distinct signalling pathways.   总被引:1,自引:0,他引:1  
L M Ballou  H Luther  G Thomas 《Nature》1991,349(6307):348-350
Activation of protein synthesis is required for quiescent cells to transit the cell cycle, and seems to be mediated in part by phosphorylation of the 40S ribosomal protein, S6. A mitogen-activated S6 kinase of relative molecular mass 70,000 (70K) has been isolated from mouse fibroblasts as well as from avian, rat and rabbit tissues. Comparison of complementary DNA sequences shows that this enzyme is distinct from S6 kinase II (92K) found in Xenopus eggs and fibroblasts. Both kinases are activated by serine/threonine phosphorylation, suggesting that at least one serine/threonine kinase links receptor tyrosine kinases with S6 kinases. A candidate for this link is MAP2 kinase, which is rapidly activated by tyrosine/threonine phosphorylation following mitogenic stimulation. Incubation of MAP2 kinase from insulin-treated 3T3-L1 adipocytes with phosphatase-inactivated S6 kinase II from Xenopus leads to partial reactivation and phosphorylation of the enzyme. These and other findings have led to the suggestion that MAP2 kinase also activates the 70K S6 kinase. Here we refute this idea by showing that the two kinases lie on distinct signalling pathways.  相似文献   

18.
Guanylate cyclase has been strongly implicated as a cell-surface receptor on spermatozoa for a chemotactic peptide, and on various other cells as a receptor for atrial natriuretic peptides. Resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-Leu-NH2), the chemotactic peptide released by sea urchin Arbacia punctulata eggs, is specifically crosslinked to A. punctulata spermatozoan guanylate cyclase. After the binding of the peptide the state of guanylate cyclase phosphorylation modulates enzyme activity. We report here that the deduced amino-acid sequence of the spermatozoan membrane form of guanylate cyclase predicts an intrinsic membrane protein of 986 amino acids with an amino-terminal signal sequence. A single transmembrane domain separates the protein into putative extracellular and cytoplasmic-catalytic domains. The cytoplasmic carboxyl-terminal 95 amino acids contain 20% serine, the likely regulatory sites for phosphorylation. Unexpectedly, the enzyme is homologous to the protein kinase family.  相似文献   

19.
BRI1 is a critical component of a plasma-membrane receptor for plant steroids   总被引:68,自引:0,他引:68  
Wang ZY  Seto H  Fujioka S  Yoshida S  Chory J 《Nature》2001,410(6826):380-383
Most multicellular organisms use steroids as signalling molecules for physiological and developmental regulation. Two different modes of steroid action have been described in animal systems: the well-studied gene regulation response mediated by nuclear receptors, and the rapid non-genomic responses mediated by proposed membrane-bound receptors. Plant genomes do not seem to encode members of the nuclear receptor superfamily. However, a transmembrane receptor kinase, brassinosteroid-insensitive1 (BRI1), has been implicated in brassinosteroid responses. Here we show that BRI1 functions as a receptor of brassinolide, the most active brassinosteroid. The number of brassinolide-binding sites and the degree of response to brassinolide depend on the level of BRI1 protein. The brassinolide-binding activity co-immunoprecipitates with BRI1, and requires a functional BRI1 extracellular domain. Moreover, treatment of Arabidopsis seedlings with brassinolide induces autophosphorylation of BRI1, which, together with our binding studies, shows that BRI1 is a receptor kinase that transduces steroid signals across the plasma membrane.  相似文献   

20.
Protein kinase catalyzes the transfer of the γ-phosphoryl group from ATP to the hydroxyl groups o fprotein side chains, which plays critical roles in signal transduction pathways by transmitting extracellular signals across the plasma membrane and nuclear membrane to the destination sites in the cytoplasm and the nucleus. Protein kinase C (PKC) is a superfamily of phospholipid-dependent Ser/Thr kinase. There are at least 12 isozymes in PKC family.They are distributed in different tissues and play different roles in physiological processes. On account of their concern with a variety of pathophysiologic states, such as cancer,inflammatory conditions, autoimmune disorder, and cardiac diseases, the inhibitors, which can inhibit the activity of PKC and the interaction of cytokine with receptor, and interfere signal transduction pathway, may be candidates of therapeutic drugs. Therefore, intense efforts have been made to develop specific protein kinase inhibitors as biological tools and therapeutic agents. This article reviews the recent development of some of PKC inhibitors based on their interaction with different conserved domains and different inhibition mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号