首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
设E是实一致光滑Banach空间,T:E→E是m-增生算子,且对任意x,y∈E,有∥Tx-Ty∥≤L(1 ∥x-y∥),其中L≥1。假设{un}n=0^∞,{vn}n=0^∞为E中序列,{αn}n=0^∞,{βn}n=0^∞为[0,1]中实数列且满足某些条件,则Ishikawa迭代序列{xn}n=0^∞强收敛于方程x Tx=f的唯一解。  相似文献   

2.
设K是实Banach空间X中非空凸子集,T:K→K为Lipschitz φ-半压缩算子,设{αn},{bn},{cn},{α′n},{b′n},{c′n}为[0,1]中实数列且满足一定条件,{μn}n=0^∞和{νn}n=0^∞是K中两任意有界序列,则带误差项的Ishikawa型迭代序列{xn}n=0^∞强收敛于T的唯一不动点;一个相关结果处理含φ-拟强增生算子的方程解的带误差项的Ishikawa型迭代逼近。  相似文献   

3.
设K是Banch空间E的非空凸有界子集,T:K→K是一致连续强伪压缩的,{αn},(βn),(un),(vn)是满足一定条件的序列,则如下迭代序列({xn)^∞n=0{x0∈K,yn=(1-βn)xn βnTxn vn,n≥0,xn 1=(1-αn)xn αnTyn un,n≥0强收敛于T的不动点。  相似文献   

4.
一类单叶调和函数族的极值点与支撑点   总被引:1,自引:1,他引:0  
设T是由具有形式f(z)=z-∑n=2^ ∞αnz^N-∑n=2^ ∞bn z^-n,且满足条件αn≥0,bn≥0,∑n=2^ ∞n(αn bn)≤的所有复值调和函数组成的函数族.找出了函数族T的极值点与支撑点.  相似文献   

5.
牛顿下降法xn+1=xn-ωnf′^-1(xn)f(xn)是求解非线性方程f(x)=0的一种经典的迭代法,有必要研究其收敛条件,使其保持大范围收敛等优点.为了使其能够适应更多环境的需要,利用优序列方法,在一个更一般的条件下,选取了一个较为一般的下降因子序列{ωn},证明牛顿下降法的收敛性.该条件可表示为‖f′^-1(x0)f(x0)‖≤β,‖f′^-1(x0)f″(x0)‖≤γ,‖f′^-1(x0)(f″(x)-f″(y)‖≤∫^‖x-y‖ 0 L(u+‖x-x0‖)du.而此条件比传统的Kantorouich型条件更具有一般的代表性,主要表现为不减的正的有界函数L(u)取值的灵活性,能够适应更多的环境.  相似文献   

6.
研究了双随机Dirichlet级数f(s,ω)=∑^∞n=1anXne^-λn^s在{Xn}独立不同分布并满足lim/n→∞E|Xn|>0,supn≥1E|Xn|^p<∞,(p>1)等条件时的收敛性和增长性,得到了比较好的结果。  相似文献   

7.
设Rn(x)∈Rlm={P(x)/Q(x)},(n=1,2,…)是函数f(x)的第n次最佳L2逼近元,记Sn(x)=∑nk=1Rk(x),(n=1,2,…),在某些附加条件下证明了序列{Sn(x)}一致收敛于f(x),给出了序列{Sn(x)}一致收敛于f(x)的充要条件,并在另一较弱条件下证明了序列{Rn(x)}及其各阶导函数序列{R(k)n(x)},(k=1,2,…) 一致收敛于零.  相似文献   

8.
Banach空间中关于增生算子方程解带误差的Ishikawa迭代序列   总被引:1,自引:1,他引:0  
设X是任意实Banach空间,T:X→X是Lipschitz连续的增生算子,在没有假设∞∑n=0αnβn<∞之下,证明了由xn 1=(1-αn)xn αn(f-Tyn) un及yn=(1-βn)xn βn(f-Txn) vn,(A)n≥0生成的、带误差的Ishikawa迭代序列强收敛到方程x Tx=f的唯一解,并给出了更为一般的收敛率估计:若un=vn=0,(A)n≥0,则有‖xn 1-x*‖≤(1-γn)‖xn-x*‖≤…≤n∏j=0(1-γj)‖x0-x*‖,其中{yn}是(0,1)中的序列,满足γn≥[1/2max{η,1-η}-1/4min{η,1-η}]αn,(A)n≥0.  相似文献   

9.
研究了二阶拟线性差分方程Δ(Pnφ(Δxn)) f(n,xn)=0的渐进性,并给出了当任给k≠0,∑∞n=n0|φ^-1(k/pn)|=∞时此方程存在A∞^c,Ac^0型非振动解的充要条件以及存在A∞^0型非振动解的充分条件。  相似文献   

10.
设方程 x=f(x) (1) 有实根,则当|f′(x)|≤δ<1时,迭代序列 x_(n 1)=f(x_n) (2) 收敛,且收敛于方程(1)的实根(见[1]第二章)。但若|f′(x)|>1,则(2)发散,迭代失效。为了使迭代法在这种情况下仍可进行,我们对造代序列(2)略加修改,使其收敛,且收敛于(1)的根。定理1—定理4是我们为此目的而提出的收敛定理。其中条件“f″(x)保持符号”仅仅为了保证根的唯一性。因此可用“方程x=f(x)在(a、b)上有唯一实根”的较弱条件替代。  相似文献   

11.
运用简化原理,得到了对称随机级数∑n=1^∞Xn(ω)fn(x)若在Lω^2中a.s.收敛或Cesaro有界,则它关于dω^-(x)几乎必然几乎处处收敛的结果,并给出一反例,说明这个结果的逆是不正确的.然后研究了在一般的情况下,当随机系数{Xn}满足“A↓n〉0,EXn=0,aE1/2|Xn|^2≤E|Xn|〈∞”的条件下,该级数收敛的充分必要条件.  相似文献   

12.
文中给出矩阵级数求和公式:sum from k=0 to ∞(C_k(A-αE))=Pdiag{f(λ_1),……,f(λ_n)}P~(-1)或sum from k=-∞ to ∞(C_k(A-αE))=Pdiag{f(λ_1),……,f(λ_n)}P~(-1)此处C_k(k=0,±1,……)和α是复数,A是n阶矩阵,E是单位阵,而P是满足下列条件的矩阵:P~(-1)AP=diag{λ.,……,λ_n}λ_i∈D(i=1,2……,n),D是Talo级数f(Z)=sum from k=0 to ∞(C_k(Z-α)~k)或Laurent级数f(Z)=sum from k=-∞ to ∞(C_k(Z-α)~k)的收敛域.同时,我们证明了有介单调的矩阵序列收敛,而且按照任何矩阵范数,上述矩阵序列也是收敛的.  相似文献   

13.
设K是Banach空间E中非空闭凸集.{Ti}i-1^N是K中具公共不动点集F=∩i-1^NF(Ti)的Lipschitz映像族,其中F(Ti)=(x∈KiTix=x},{αn}n-1^∞},{βn}n-1^∞包含[0,1]是实数列,且∑n=1∞(1-αn)〈+∞,(1-αn)L^2〈1,这里L是{Ti}i=1^N的公共Lipschitz系数.对任意x0∈K,{xn}n-1^∞由文中隐格式组(2)和(3)产生,则(i){xn}在K中收敛;(ii){xn}收敛于{Ti)i=1^N公共不动点的充分必要条件是lim d(xn,F)=0.对于(2),如聚βn=0。隐格式组变为xn=αnxn-1+(1-αn)Tm^2xn,如果βn=1,隐格式组变为Xu与Or1的形式xn=αnxn-1+(1-αn)Tnxn,对于(3),如果βn=1,隐格式组变为显格式xn=αnxn-1+(1-αn)Tnxn-1.对于这三种特殊迭代格式,结论(i)(ii)自然成立.  相似文献   

14.
NQD样本下部分线性模型中估计的强相合性   总被引:2,自引:1,他引:2  
考虑回归模型:yi=xβ g(ti) σei≤i≤n,其中δ^1 i=f(ui),(xi,ti,ui)是固定非随机设计点列,β是未知待估参数,g和f是未知函数,随机误差序列{ei}为同分布的NQD序列.在一定的条件下,得到了β的最小二乘估计β、加权最小二乘估计β^-和最终加权最小二乘估计β^-的强相合性.  相似文献   

15.
设X是一实Banach空间,T∶X→X是Lipschitz连续的增生算子,在没有假设∑∞n=0αnβn<∞之下,本文证明了由xn 1=(1-αn)xn αn(f-Tyn) un以yn=(1-βn)xn βn(f-Txn) vn,n≥0产生的带误差的Ishikawa迭代序列强收敛到方程x Tx=f的唯一解,并给出了更为一般的收敛率估计:若un=vn=0,n≥0,则有‖xn 1-x*‖≤(1-αn)‖xn-x*‖≤…≤∏in=0(1-αj)‖xn-x*‖,其中{αn}是(0,1)中的序列,满足γn≥4ηL(L 1)αn,n≥0。  相似文献   

16.
讨论了第二积分中值定理∫a^bf(x)g(x)dx=g(α)∫^-ξaf(x)dx g(b)∫ξ^bf(x)dx的中值点ξ的渐进性,即当(1)f(α)=f(α)=…=f(^(n-2)(α)=0,f(n-1)(α)≠0;(2)g^k 1(α)=…=g^(k m-1)(α)=0,g^(k m)(α)≠0时,在一定条件下,我们有limb→a^ ξ-a/b-a=(k m/k m n)^1/n,所得结果包含了献[1-4]的主要结果。  相似文献   

17.
一、引言设给定函数,f(z)=sum from n=0 to ∞ c_nz~n (|z|<1),其中α_n是复数。我们使用下列符号: S_n=α_0+α_1……+α_n=S_n~(0) S_n~(p)(p>-1)定义如下: sum from n=0 to ∞ S_n~(p) x~n=1/(1-x)~(p+1) sum from n=0 to ∞α_n x~n —z平面上的闭凸集(闭凸域,直线,射线,线段,点) G_ε—包含G在其内的凸区域,且G_ε的边界点与G的距离ξ≤ε。 Cesaro(齐查罗)求和:如果=S,就说级数sum from n=0 to ∞α_n用p阶Cesaro方法[(c;p)—法]可求和,共和为S,记作sum from n=0 to ∞α_n S. 条件(A):如果函数,f(z)在|z|<1解析,在闭圆|z-x_0|≤1-x。(任意x_0,0≤x_0<1)连续,则称函数,f(z)满足条件(A)。条件(B):如果函数,f(z)在圆|z-x_0|<1-x_0有界,在点z=1有放射边界值: f(1)=f(z), 则称,f(z)满足条件(B)。  相似文献   

18.
设 {Xn} ∞n =1是一维平稳过程 ,具有公共未知密度f(x) ,在假设过程 {Xn} ∞n =1是α -混合的情形下 ,讨论了基于前n个观测值 {Xi} ni=1的 f(x)的最近邻估计的逐点相合性、一致相合性以及收敛速度  相似文献   

19.
本文在对系数的幅角加以限制的条件下研究了Bieberbach猜想,得到了下述结果, 1·若f(z)=z+sum from n-2 to ∞ a_nz~n∈S,arga_n=θ_n, φ_n=θ_(n+1)-θ_n-θ_2, 如果α_n≤|φ_n|,n≥7,则|a_n|相似文献   

20.
设 X是拓扑空间 ,d:X× X→ [0 ,+∞ ) ,且 d ( x ,y) =0 ,当且仅当 x =y,如果 ∞n=1d( xn,xn+ 1) <∞蕴含着序列{ xn} ∞n=1在 X中收敛 ,称 X是 d -完备拓扑空间。令 f :X→ X是 d-完备空间 X上的 w-连续映射 ,文章给出了 f的压缩和扩张条件 ,并证明了 f在该条件下的不动点存在性定理。特别地 ,在完备度量空间中 ,所给出的压缩条件下的不动点定理推广了 Banach压缩映射原理  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号