首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A Hemmati-Brivanlou  D A Melton 《Nature》1992,359(6396):609-614
Activins can induce mesoderm in embryonic explants and have been proposed as the natural inducer in Xenopus. A mutant activin receptor that inhibits activin signalling is used to show that activin is required for the induction of mesoderm in vivo and the patterning of the embryonic body plan. Blocking the activin signal transduction pathway also reveals autonomous induction of a neural marker and unmasks a relationship between activin and fibroblast growth factor.  相似文献   

2.
Protein kinase C mediates neural induction in Xenopus laevis   总被引:10,自引:0,他引:10  
A P Otte  C H Koster  G T Snoek  A J Durston 《Nature》1988,334(6183):618-620
Inductive cell interactions are essential in early embryonic development, but virtually nothing is known about the molecular mechanisms involved. Recently factors resembling fibroblast growth factor and transforming growth factor-beta were shown to be involved in mesoderm induction in Xenopus laevis, suggesting that membrane receptor-mediated signal transduction is important in induction processes. Here we report direct measurements of protein kinase C (PKC) activity in uninduced ectoderm, and in neuroectoderm shortly after induction by the involuting mesoderm, in Xenopus laevis embryos. Membrane-bound PKC activity increased three to fourfold in the induced neuroectoderm while the cytosolic PKC activity was decreasing, indicating that PKC activity was translocated during neural induction. A similar time- and dose-dependent translocation of activity was seen after incubation with the PKC activator 12-O-tetradecanoyl phorbol-13-acetate, which also induced neural tissue in competent ectoderm, suggesting that PKC is involved in the response to the endogenous inducing signal during neural induction.  相似文献   

3.
Induction of mesoderm during early amphibian embryogenesis can be mimicked in vitro by adding growth factors, including heparin-binding and type-beta transforming growth factors (TGF-beta), to isolated ectoderm explants from Xenopus laevis embryos. Although the mesoderm-inducing factor (MIF) from X. laevis XTC cells (XTC-MIF) has properties similar to TGF-beta, this factor is still unidentified. Recently, we obtained a number of homogeneous cell lines from the heterogeneous XTC population, which differ in their MIF production. Only one, XTC-GTX-11, produced MIF, although it was similar to the rest of the clones in its production of known growth factors, including TGF-beta activity. This observation, together with the identification of activin A as a potent MIF led us to study the parallel activities of MIF and activin. Here we report an analysis of activin-like activity from XTC cells and some of the XTC clones, including XTC-GTX-11. There is a clear consistent correlation between MIF activity and presence of activin activity, indicating that XTC-MIF is the Xenopus homologue of mammalian activin.  相似文献   

4.
PDGF induction of tyrosine phosphorylation of GTPase activating protein   总被引:107,自引:0,他引:107  
The cascade of biochemical events triggered by growth factors and their receptors is central to understanding normal cell-growth regulation and its subversion in cancer. Ras proteins (p21ras) have been implicated in signal transduction pathways used by several growth factors, including platelet-derived growth factor (PDGF). These guanine nucleotide-binding Ras proteins specifically interact with a cellular GTPase-activating protein (GAP). Here we report that in intact quiescent fibroblasts, both AA and BB homodimers of PDGF rapidly induce tyrosine phosphorylation of GAP under conditions in which insulin and basic fibroblast growth factor (bFGF) are ineffective. Although GAP is located predominantly in the cytosol, most tyrosine-phosphorylated GAP is associated with the cell membrane, the site of p21ras biological activity. These results provide a direct biochemical link between activated PDGF-receptor tyrosine kinases and the p21ras-GAP mitogenic signalling system.  相似文献   

5.
J C Smith  B M Price  K Van Nimmen  D Huylebroeck 《Nature》1990,345(6277):729-731
The first inductive interaction in amphibian development is mesoderm induction, when a signal from the vegetal hemisphere of the blastula induces mesoderm from overlying equatorial cells. Recently, several 'mesoderm-inducing factors' (MIFs) have been discovered. These cause isolated Xenopus animal caps to form mesodermal cell types such as muscle, instead of their normal fate of epidermis. The MIFs fall into two classes. One comprises members of the fibroblast growth factor (FGF) family, and the other members of the transforming growth factor type beta (TGF-beta) family. Of the latter group, the most potent is XTC-MIF, a protein produced by Xenopus XTC cells. Here we show that XTC-MIF is the homologue of mammalian activin A. Activins modulate the release of follicle-stimulating hormone from cultured anterior pituitary cells and cause the differentiation of two erythroleukaemia cell lines. Our results indicate that these molecules may also act in early development during formation of the mesoderm.  相似文献   

6.
7.
S Sokol  D A Melton 《Nature》1991,351(6325):409-411
Activin, a peptide growth factor related to tumour growth factor-beta, has been implicated in early inductive interactions in vertebrates and can induce Xenopus blastula ectodermal explants to develop a rudimentary axial pattern with anteroposterior and dorsoventral polarity. Here we demonstrate that prospective dorsal and ventral regions of the ectoderm respond differently to the same concentration of activin. Thus, activin does not seem to endow ectodermal cells with polarity but rather reveals a pre-existent pattern. Our results suggest that patterning of mesoderm is determined not only by a localized inducer, but also by the differential competence of cells in the responding tissue.  相似文献   

8.
Many growth factors upon stimulation of their receptors induce the activity of extracellular signal-regulated kinases, ERKs, also known as MAP kinases. Several of these growth factors also activate the ras proto-oncogene product, p21ras (Ras), by stimulating the conversion of the inactive GDP-bound form of Ras to the active GTP-bound form. We have shown that direct introduction of p21ras oncoprotein into cells in the absence of growth factors activates ERKs within five minutes, which indicates that normal p21ras may be involved in the activation of ERKs by growth factors. Here we use a recombinant vaccinia virus expressing an interfering mutant of p21ras, RasAsn17, to investigate this question. In NIH3T3 cells that overexpress the insulin receptor, this recombinant virus inhibits insulin-induced activation of ERK2 completely, but there is no inhibition of insulin-induced activation of phosphatidylinositol-3-kinase. In rat-1 cells the recombinant virus inhibited ERK2 activity induced by platelet-derived growth factor (PDGF) but not by phorbol ester. We conclude that p21ras mediates insulin- and PDGF-induced activation of ERK2.  相似文献   

9.
Niederländer C  Walsh JJ  Episkopou V  Jones CM 《Nature》2001,410(6830):830-834
Nodal-related members of the transforming growth factor (TGF)-beta family regulate the induction of mesoderm, endoderm, and mesendoderm, a tissue specific to the Spemann organizer. How these different tissues form in response to the same signalling molecules is not completely understood. It has been suggested that concentration-dependent effects, mediated by extracellular cofactors and antagonists, are responsible for the differences. Here we show that the nuclear protein Arkadia specifically potentiates the mesendoderm-inducing activity of a subset of TGF-beta family members. The combined activities of Arkadia and Xenopus nodal-related-1 are sufficient to induce mesendoderm and suppress mesoderm. Arkadia dorsalizes ventral tissues, resulting in the induction of organizer-specific gene expression. Blocking nodal signalling extracellularly inhibits these effects. Arkadia influences nodal activity when co-expressed and can function in cells adjacent to those producing the nodal signal. Our findings, together with the observation that Arkadia mutant mice lack a node and node-derived mesendoderm, identify Arkadia as an essential modulator of the nodal signalling cascade that leads to induction of Spemann's organizer.  相似文献   

10.
C Ellis  M Moran  F McCormick  T Pawson 《Nature》1990,343(6256):377-381
The critical pathways through which protein-tyrosine kinases induce cellular proliferation and malignant transformation are not well defined. As microinjection of antibodies against p21ras can block the biological effects of both normal and oncogenic tyrosine kinases, it is likely that they require functional p21ras to transmit their mitogenic signals. No biochemical link has been established, however, between tyrosine kinases and p21ras. We have identified a non-catalytic domain of cytoplasmic tyrosine kinases, SH2, that regulates the activity and specificity of the kinase domain. The presence of two adjacent SH2 domains in the p21ras GTPase-activating protein (GAP) indicates that GAP might interact directly with tyrosine kinases. Here we show that GAP, and two co-precipitating proteins of relative molecular masses 62,000 and 190,000 (p62 and p190) are phosphorylated on tyrosine in cells that have been transformed by cytoplasmic and receptor-like tyrosine kinases. The phosphorylation of these polypeptides correlates with transformation in cells expressing inducible forms of the v-src or v-fps encoded tyrosine kinases. Furthermore, GAP, p62 and p190 are also rapidly phosphorylated on tyrosine in fibroblasts stimulated with epidermal growth factor. Our results suggest a mechanism by which tyrosine kinases might modify p21ras function, and implicate GAP and its associated proteins as targets of both oncoproteins and normal growth factor receptors with tyrosine kinase activity. These data support the idea that SH2 sequences direct the interactions of cytoplasmic proteins involved in signal transduction.  相似文献   

11.
The earliest cell fate decision in the mammalian embryo separates the extra-embryonic trophoblast lineage, which forms the fetal portion of the placenta, from the embryonic cell lineages. The body plan of the embryo proper is established only later at gastrulation, when the pluripotent epiblast gives rise to the germ layers ectoderm, mesoderm and endoderm. Here we show that the T-box gene Eomesodermin performs essential functions in both trophoblast development and gastrulation. Mouse embryos lacking Eomesodermin arrest at the blastocyst stage. Mutant trophoectoderm does not differentiate into trophoblast, indicating that Eomesodermin may be required for the development of trophoblast stem cells. In the embryo proper, Eomesodermin is essential for mesoderm formation. Although the specification of the anterior-posterior axis and the initial response to mesoderm-inducing signals is intact in mutant epiblasts, the prospective mesodermal cells are not recruited into the primitive streak. Our results indicate that Eomesodermin defines a conserved molecular pathway controlling the morphogenetic movements of germ layer formation and has acquired a new function in mammals in the differentiation of trophoblast.  相似文献   

12.
Co-capping of ras proteins with surface immunoglobulins in B lymphocytes   总被引:8,自引:0,他引:8  
L Graziadei  K Riabowol  D Bar-Sagi 《Nature》1990,347(6291):396-400
Cellular ras genes encode a family of membrane-associated proteins (p21ras) that bind guanine nucleotide and possess a low intrinsic GTPase activity. The p21ras proteins are ubiquitously expressed in mammalian cells and are thought to be involved in a growth-promoting signal transduction pathway; their mode of action, however, remains unknown. The ligand-induced movement of cell-surface receptors seems to be a primary event in the transduction of several extracellular signals that control cell growth and differentiation. In B lymphocytes, surface immunoglobulin receptors crosslinked by antibody or other multivalent ligands form aggregates called patches, which then collect into a single assembly, a cap, at one pole of the cell. This process constitutes the initial signal for the activation of a B cell. Here we show by immunofluorescence microscopy that p21ras co-caps with surface immunoglobulin molecules in mouse splenic B lymphocytes. In contrast, no apparent change in the distribution of p21ras occurs during the capping of concanavalin A receptors. The redistribution of p21ras is apparent at the early stages (patching) of immunoglobulin capping and is inhibited by metabolic inhibitors and the cytoskeleton-disrupting agents colchicine and cytochalasin D. The distribution of another membrane-associated guanine nucleotide-binding regulatory protein, the Gi alpha subunit, is not affected by surface immunoglobulin capping. These findings demonstrate that p21ras can migrate in a directed manner along the plasma membrane and suggest that p21ras may be a component of the signalling pathway initiated by the capping of surface immunoglobulin in B lymphocytes.  相似文献   

13.
血管内皮细胞凋亡过程中几种癌基因表达的研究   总被引:1,自引:0,他引:1  
为了研究细胞凋亡的分子调控机制 ,用光学显微技术、DNA凝胶电泳和Northernblot方法 ,研究了去除生长因子 (FGF和血清 )和蛇毒诱导的两个血管内皮细胞凋亡系统中 p53、c H ras、c myc和bcl 2基因的表达 .发现去除生长因子诱导的细胞凋亡过程中 ,p53基因表达显著增加 ,c H ras和c myc基因表达无变化 ;蛇毒诱导细胞凋亡过程中 ,p53基因表达显著增加 ,c H ras和c myc基因表达无变化 .在正常生长和凋亡细胞中均未检测到bcl 2基因的明显表达 .实验结果表明 :p53基因参与上述两种细胞凋亡诱导系统的分子调控 ;c H ras基因只参与去除生长因子诱导的细胞凋亡过程 ,而不参与蛇毒诱导的细胞凋亡过程 ;这两种细胞凋亡诱导系统均与c myc基因表达无关 ;未见bcl 2基因明显参与血管内皮细胞的凋亡过程 .  相似文献   

14.
C Calés  J F Hancock  C J Marshall  A Hall 《Nature》1988,332(6164):548-551
About 30% of human tumours contain a mutation in one of the three ras genes leading to the production of p21ras oncoproteins that are thought to make a major contribution to the transformed phenotype of the tumour. The biochemical mode of action of the ras proteins is unknown but as they bind GTP and GDP and have an intrinsic GTPase activity, they may function like regulatory G proteins and control cell proliferation by regulating signal transduction pathways at the plasma membrane. It is assumed that an external signal is detected by a membrane molecule (or detector) that stimulates the conversion of p21.GDP to p21.GTP which then interacts with a target molecule (or effector) to generate an internal signal. Recently a cytoplasmic protein, GAP, has been identified that interacts with the ras proteins, dramatically increasing the GTPase activity of normal p21 but not of the oncoproteins. We report here that GAP appears to interact with p21ras at a site previously identified as the 'effector' site, strongly implicating GAP as the biological target for regulation by p21.  相似文献   

15.
16.
J B Green  J C Smith 《Nature》1990,347(6291):391-394
The protein XTC-MIF, a Xenopus homologue of activin A and a potent mesoderm-inducing factor, can induce responding animal pole explants to form several different cell types in a dose-dependent manner, higher doses eliciting more dorso-anterior tissues. This graded response, characteristic of classically postulated morphogens, may underlie pattern formation, but the response of intact animal caps to XTC-MIF provides only a crude indication of trends. Here we report the effects of XTC-MIF on dispersed blastomeres rather than intact animal caps. Under these conditions, responding cells distinguish sharply between doses of pure XTC-MIF differing by less than 1.5-fold. Two different response thresholds have been found, defining three cell states. This suggests that XTC-MIF has an instructive effect. Notochord and muscle are both induced in the same narrow dose-range. Mixing treated with untreated cells does not seem to shift the dose thresholds, showing that at least some cells can stably record the received dose of inducing factor.  相似文献   

17.
All-trans retinoic acid (RA) is well known as a biologically active form of vitamin A and a teratogen. The identification of nuclear receptors for this ligand suggests strongly that it is an endogenous signal molecule, and measurements of RA and teratogenic manipulations suggest further that RA is a morphogen specifying the anteroposterior axis during limb development. Besides the limb, RA and other retinoids affect development of other organs, including the central nervous system (CNS). None of these other effects has been investigated in detail. Our purpose here was to begin analysing the effects of RA on CNS development in Xenopus laevis. We find that RA acts on the developing CNS, transforming anterior neural tissue to a posterior neural specification. These and other findings raise the possibility that RA mediates an inductive interaction regulating anteroposterior differentiation within the CNS. Following recent reports implicating transforming growth factor-beta 2-like and fibroblast growth factor-like factors in mesoderm induction, this indicates that a different type of signal molecule (working through a nuclear receptor, not a plasma membrane receptor) might mediate inductive cell interactions during early embryonic development.  相似文献   

18.
J C Lacal  J Moscat  S A Aaronson 《Nature》1987,330(6145):269-272
Genes involved in the transduction of signals required for normal cell proliferation commonly appear to be subverted in the neoplastic process. One such group is the highly conserved family of ras genes, which have been detected as transforming genes in a wide variety of naturally occurring tumours. By analogy with other known G proteins, the p21 proteins encoded by ras genes may act as regulatory proteins in the transduction of signals that lead to DNA synthesis. A major pathway involved in the DNA synthesis induced by growth factors is mediated by phosphatidylinositol turnover: cleavage of phosphoinositides by phospholipase C produces 1,2-diacylglycerol, and inositol phosphates. The former acts as an essential cofactor for protein kinase C (ref. 4), and inositol-(1,4,5)-triphosphate mobilizes Ca2+ from non-mitochondrial intracellular stores. We demonstrate a reproducible increase in 1,2-diacylglycerol, in the absence of a detectable increase in inositol phosphates, in transformed cells containing Ha-ras oncogenes and with different membrane targeting signals for the ras p21 protein. These findings suggest that a source other than phosphoinositides exists for the generation of 1,2-diacylglycerol and that the Ha-ras oncogene specifically activates this novel pathway for 1,2-diacylglycerol production.  相似文献   

19.
T Kamata  J R Feramisco 《Nature》1984,310(5973):147-150
Several human tumour cell lines contain genes that can transform NIH 3T3 cells into malignant cells. Certain genes have been classified as members of the ras oncogene family, namely, Ha-ras, Ki-ras or N-ras. The proteins encoded by the ras family are generally small (Ha-ras, for example, encodes a protein of molecular weight 21,000 named p21), and are associated with the inner surface of the plasma membrane. The only known biochemical property common to all forms of the ras proteins is the ability to bind guanine nucleotides, a property which may be closely related to the transforming ability of ras proteins. A GTP-dependent, apparent autophosphorylation (on threonine 59) activity has been identified only in the case of the v-Ha-ras protein. Although the role of these biochemical activities in the transformation process remains unclear, we have initiated studies to determine the possible biochemical interactions of ras proteins with other membrane components. We report here the evidence that epidermal growth factor enhances the guanine nucleotide binding activity of activated c-Ha-ras or v-Ha-ras p21, and phosphorylation of v-Ha-ras p21, suggesting that some mitogenic growth factors may regulate those activities.  相似文献   

20.
Nodal signalling in vertebrate development   总被引:9,自引:0,他引:9  
Schier AF  Shen MM 《Nature》2000,403(6768):385-389
Communication between cells during early embryogenesis establishes the basic organization of the vertebrate body plan. Recent work suggests that a signalling pathway centering on Nodal, a transforming growth factor beta-related signal, is responsible for many of the events that configure the vertebrate embryo. The activity of Nodal signals is regulated extracellularly by EGF-CFC cofactors and antagonists of the Lefty and Cerberus families of proteins, allowing precise control of mesoderm and endoderm formation, the positioning of the anterior-posterior axis, neural patterning and left-right axis specification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号