首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
简要讨论了强脉冲离子束与钛靶相互作用的理论模型,选取特定参数,应用数值计算的方法模拟计算离子能量为100 keV、300 keV和450 keV的H 、C 离子束与钛靶相互作用,给出了钛靶在辐照后离子浓度-深度分布、能量梯度分布等模拟计算结果.H 与钛靶相互作用过程中的能量损失在钛靶内部出现峰值,然后迅速减少为零,而C 在钛靶表面沉积较多的能量.  相似文献   

2.
计算了强脉冲离子束与钛靶相互作用的能量损失分布.H+与钛靶相互作用过程中的能量损失在钛靶内较深处,而C+在钛靶表面沉积较多的能量.束流含离子种类不同,入射靶材的深度及传给靶材的能量分布不同,对靶材将产生不同的作用效果.用ABAQUS有限元软件,以单元死活表征汽化材料的体加载方式对靶材钛进行不同能量参数的强流脉冲离子束辐照热效应的模拟计算.得到了强流脉冲离子束辐照金属表面的传热数据.通过分析,验证了模拟结果的合理性和凹坑形成的机理.  相似文献   

3.
以纯铝材料为实验样品,建立了实验过程中的二维温度场数学物理模型,并用有限中心差分法来实现温度场的数值模拟,得到了温度场的相关分布。根据模拟结果给出材料的最先熔化时刻、熔化层厚度等实验、技术参数。  相似文献   

4.
考虑瞬态的热传导过程,用有限差分方法计算了强流恒定离子束辐照过程的温度效应.由温升曲线的计算可知,对中等以上的注量率(>10~(13)cm~(-2)s~(-1))来说,快速注入过程都将是非稳态的,由此可知对强流离子束辐照过程进行瞬态热传导分析是必要的.若注量固定,晶片表面温度与离子能量的关系在低能部分(<100keV)很平缓,在高能部分很陡峭,在大注量注入情况下,降低靶座温度以抑制晶片表面温升是可行的方法之一.  相似文献   

5.
不预热紫铜钨极氩弧焊温度场的数值模拟   总被引:1,自引:0,他引:1  
根据能量守恒的基本原理和钨极氩弧焊(TIG)工艺的特点,建立了运动电弧作用下紫铜的三维非稳态TIG焊接熔池形态的数值分析模型,分析中引入了热焓的概念和表面双椭圆分布的热源模型,较好地满足了TIG焊接数值模拟的要求.针对紫铜焊接性较差的特点,在不预热的情况下采用Ar+N2混合保护气体对厚壁紫铜进行了TIG焊接的研究.试验结果表明电弧的热效应显著提高,实现紫铜的不预热TIG焊接是可行的.同时在不同工艺参数条件下对TIG焊接温度场进行了研究,建立了不同的工艺参数与熔深和熔宽之间的关系.并且将计算值与试验值进行了比较,结果表明计算结果与实际测量的结果较为吻合,证明了模型的可靠性和正确性.  相似文献   

6.
强流离子束物理问题及其束晕-混沌的控制方法   总被引:1,自引:4,他引:1  
强流离子束在国防和国民经济领域中有着极其重要的广泛的应用和发展前景。特别是强流加速器驱动的放射性洁净核能系统。比常规核电更安全、更干净、更便宜,成为20世纪90年代以来国内外该领域的研究热点。但是,处理强流束产生的复杂时空束晕-混沌现象已经成为强流离子束应用中的关键技术之一,需要有效地控制束晕才能确保强流离子束的许多重要应用。在此对强流离子束的主要用途、物理技术问题、宏观粒子模拟的基本方法,尤其是束晕-混沌的控制方法的研究进展,进行简要评述,并指出今后的研究方向。  相似文献   

7.
研究了强脉冲离子束(IPIB)对Ni/Ti和Al/Ti体系的混合效果,并与常规离子束混合进行了对比研究,表明IPIB辐照确实获得了比常规离子束辐照更厚的混合层,且混合效率远高于常规离子束。但对于不同的膜/基体体系,IPIB混合效果相差很大。这与膜和基体的热力学特性的差异相关。在IPIB辐照过程中,膜材料损失严重,特别是膜和基体的热力学特性差异大的样品损失更加严重。探讨了IPIB辐照不同于常规离子束混合的两种特殊混合机制以及膜材料损失的原因。  相似文献   

8.
采用微波等离子体化学气相沉积(MWPCVD)技术以不同气源在优化的工艺条件下制备不同类型的金刚石薄膜作为强流脉冲电子发射阴极材料,用SEM、AFM、FTIR和Raman光谱分析不同金刚石薄膜的组成结构,用2 MeV直线感应型强流电子注入器平台检测强流脉冲发射特性.结果表明,不同类型的金刚石薄膜均具有较强的脉冲电子发射能力,发射电流密度均可达70 A/cm2以上;各膜材的发射电流密度和稳定性相差很大,相对而言,以Ar+CO2+GH4+B2H6制备的掺B微米金刚石薄膜能获得的初始电流最大,达到115 A/cm2,其多次脉冲发射稳定性也较好,波动范围在33%以内,且能保证发射电流密度均在84 A/cm2以上,是有希望的强流多脉冲电子发射阴极候选材料.  相似文献   

9.
失匹配因子和调谐因子对强流离子束的影响   总被引:1,自引:1,他引:0  
运用P IC多粒子模拟程序,采用延迟反馈控制法,对初始分布为K-V分布的强流离子束研究了其在加速器通道中运行时受失匹配因子和调谐衰减因子的影响程度。得到了失匹配因子某些取值范围可导致束晕无法控制,但对于各种取值,对径向密度分布均影响不大,以及调谐衰减因子对径向密度分布曲线的形状有明显的影响等结果。  相似文献   

10.
为了研究脉冲宽度对飞秒激光辐照金属后产生的电子和晶格温度场以及平衡时间的影响,基于双温耦合理论,采用有限元方法,考虑激光的空间和时间分布,数值模拟高斯分布的飞秒激光辐照金属表面产生的温度场.给出了双温方程及数值模型,得到金属材料中电子和晶格的温度场.结果表明飞秒激光的脉冲宽度不仅影响某一点处电子和晶格温度的上升速度和最...  相似文献   

11.
脉冲电子束照射下材料表面熔化深度的数值解析   总被引:1,自引:0,他引:1  
根据温度场热传导基本方程,建立用于脉冲电子束加工的有限元模型,提出一种脉冲电子束对材料表面熔化深度进行数值解析的方法.采用均匀体热源的热加载方式,对电子束熔化材料表面后的温度场进行数值解析,分析不同加速电压、电子束能量密度以及能量均匀性对材料熔化深度的影响,归纳了能量均匀度0.9~1.0、能量密度2~17 J/ cm2、加速电压25~50 kV情况下材料表面熔化深度曲线,得到了表面熔化层深的变化规律,为电子束对模具表面精密光整加工提供了理论依据.  相似文献   

12.
为了研究强流脉冲离子束(HIPIB)辐照靶材产生烧蚀等离子体向真空中喷发的机制,建立了与HIPIB烧蚀靶材形状相关的沿变截面管道流动的等离子体喷发动力学模型,并以烧蚀结果为初始条件采用数值方法计算了喷发等离子体压力、密度及速度的时空演化规律。结果表明:密度演化结果与一维明显不同,随时间增加峰值先增加而后再减小,且逐渐趋于平缓,存在峰值位置,说明薄膜的形成与基片相对靶材位置是相关的。该结果对HIPIB辐照进行薄膜生长具有一定的参考价值和指导意义。  相似文献   

13.
通过建立圆管状突扩燃烧室内流动及传热的数学模型,对燃烧室内的流场及温度场进行了数值模拟,讨论了分析了突扩燃烧室内的流场与温度场的分布规律及影响因素。研究结果对突扩状燃烧器的设计具有指导意义,所建立的数学模型可作为设计中进行定量分析的有效手段。  相似文献   

14.
室温下在 Ni Cr合金 ( Hastelloy c-2 75)基底上应用 Ar 离子源辅助 ,准分子脉冲激光沉积了Ce O2 薄膜 .结果表明 :在合适的外部条件控制下 ,直接在 Ni Cr合金基底上可以制备出 c-轴取向的 Ce O2薄膜 ,但这时的 Ce O2 薄膜在其 a-b平面内没有观察到织构的信息 ;进一步在相同的条件下 ,首先在 Ni Cr合金基底上制备一层 YSZ( Yttria-Stabilized Zirconia) ,再在 YSZ/Ni Cr上制备 Ce O2 薄膜 ,这时的 Ce O2薄膜不但是 c-轴取向 ,同时在其 a-b平面内织构 .  相似文献   

15.
钢坯加热是轧制前的重要工序,随着燃料价格的提高及新钢种的应用,建立精确的钢坯温度-时间关系传热模型已成为提高产品质量和节能降耗的首要条件。以某钢厂轧钢加热炉为研究对象,对钢坯加热过程的温度场进行数值模拟。建立了板坯在加热炉内加热数学模型,采用有限容积法对模型进行了离散,通过编程求解得出:在各加热段钢坯角部温度最高,加热段升温速度最快,钢坯断面温差最大,均热段断面温差最小,钢坯出炉断面温差稍高,建议延长均热时间。  相似文献   

16.
离子束蚀刻是一种有超精细加工能力的微细加工技术,广泛应用于微电子、光子技术、表面科学等领域。硅及其化合物常用来制作大规模集成电路,在其表面蚀刻出具有一定几何布图尺寸的沟槽。其深度、宽度、边壁倾角及槽底形状等直接影响器件的性能。  相似文献   

17.
当固体表面被荷能离子轰击时,表面貌相发生变化,早在Wehner的实验中就观察到被溅射的球形靶变成为圆锥形状,后来Stewart等对圆锥的形成进行了讨论,指出最终圆锥的底角应为使溅射率Y(θ)取极大值的角度θ_P.本文导出了离子束刻蚀固体表面貌相变化的特征曲线方程,利用微机对球形靶表面貌相变化进行了模拟.其结果和实验基本一致,但圆锥底角为θ_,即是对应于刻蚀速率v(θ)为极值的角度.并从理论上给了初步说明.  相似文献   

18.
1 离子束蚀刻实验 1.1 样品制备取机械抛光的N型单晶硅片(1,1,1)作蚀刻样品,均匀涂上厚度为1μm的OMR-83光刻胶,利用集成电路制版技术,用曝光方法将光刻胶刻出宽度分别为15μm,10μm,5μm,长为2mm的长槽。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号