首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Einstein proclaimed that we could discover true laws of nature by seeking those with the simplest mathematical formulation. He came to this viewpoint later in his life. In his early years and work he was quite hostile to this idea. Einstein did not develop his later Platonism from a priori reasoning or aesthetic considerations. He learned the canon of mathematical simplicity from his own experiences in the discovery of new theories, most importantly, his discovery of general relativity. Through his neglect of the canon, he realised that he delayed the completion of general relativity by three years and nearly lost priority in discovery of its gravitational field equations.  相似文献   

2.
The history of the publication of the gravitational field equations of general relativity in November 1915 by Einstein and Hilbert is briefly reviewed. An analysis of the internal structure and logic of Hilbert's theory as expounded in extant proofs and in the published version of his relevant paper is given with respect to the specific question what information would have been found on a missing piece of Hilbert's proofs. The existing texts suggest that the missing piece contained the explicit form of the Riemann curvature scalar in terms of the Ricci tensor as a specification of the axiomatically underdetermined Lagrangian in Hilbert's action integral. An alternative reading that the missing piece of the proofs already may have contained the Einstein tensor, i.e. an explicit calculation of the gravitational part of Hilbert's Lagrangian is argued to be highly implausible.  相似文献   

3.
In publications in 1914 and 1918, Einstein claimed that his new theory of gravity in some sense relativizes the rotation of a body with respect to the distant stars (a stripped-down version of Newton's rotating bucket experiment) and the acceleration of the traveler with respect to the stay-at-home in the twin paradox. What he showed was that phenomena seen as inertial effects in a space-time coordinate system in which the non-accelerating body is at rest can be seen as a combination of inertial and gravitational effects in a (suitably chosen) space-time coordinate system in which the accelerating body is at rest. Two different relativity principles play a role in these accounts: (a) the relativity of non-uniform motion, in the weak sense that the laws of physics are the same in the two space-time coordinate systems involved; (b) what Einstein in 1920 called the relativity of the gravitational field, the notion that there is a unified inertio-gravitational field that splits differently into inertial and gravitational components in different coordinate systems. I provide a detailed reconstruction of Einstein's rather sketchy accounts of the twins and the bucket and examine the role of these two relativity principles. I argue that we can hold on to (b) but that (a) is either false or trivial.  相似文献   

4.
The story of Einstein's struggle to create a general theory of relativity, and his early discontentment with the final form of the theory (1915), is well known in broad outline. Thanks to the work of John Norton and others, much of the fine detail of the story is also now known. One aspect of Einstein's work in this period has, however, been relatively neglected: Einstein's commitment to Mach's ideas on inertia, and the influence this commitment had on Einstein's work on general relativity from 1907 to 1918. In this paper published writings and archival material are examined, to try to reconstruct the details of Einstein's thinking about inertia and gravitation, and the role that Mach's ideas played in Einstein's crucial work on the general theory. By the end, a clear picture of Einstein's conceptions of Mach's ideas on inertia, and their philosophical motivations, will emerge. Several surprising conclusions also emerge: Einstein's desire for a Machian gravitation theory was the central force driving his work from 1912 to 1915, keeping him going despite numerous frustrating setbacks; Einstein's continued commitment to Mach's ideas in 1916–1917 kept him at work trying various strategies of modification of the field equations, in order to exclude anti-Machian solutions (including the addition of the cosmological constant in 1917); and as late as early 1918, Einstein was ready to call the whole General Theory a failure if no way of squaring it with Mach's ideas on inertia could be found. But by 1920 Einstein advocated a view that granted spacetime (under the name ‘ether’) independent existence with physical qualities of its own, a complete break with his earlier Machian views.  相似文献   

5.
The question of the existence of gravitational stress-energy in general relativity has exercised investigators in the field since the inception of the theory. Folklore has it that no adequate definition of a localized gravitational stress-energetic quantity can be given. Most arguments to that effect invoke one version or another of the Principle of Equivalence. I argue that not only are such arguments of necessity vague and hand-waving but, worse, are beside the point and do not address the heart of the issue. Based on a novel analysis of what it may mean for one tensor to depend in the proper way on another, which, en passant, provides a precise characterization of the idea of a “geometric object”, I prove that, under certain natural conditions, there can be no tensor whose interpretation could be that it represents gravitational stress-energy in general relativity. It follows that gravitational energy, such as it is in general relativity, is necessarily non-local. Along the way, I prove a result of some interest in own right about the structure of the associated jet bundles of the bundle of Lorentz metrics over spacetime. I conclude by showing that my results also imply that, under a few natural conditions, the Einstein field equation is the unique equation relating gravitational phenomena to spatiotemporal structure, and discuss how this relates to the non-localizability of gravitational stress-energy. The main theorem proven underlying all the arguments is considerably stronger than the standard result in the literature used for the same purposes (Lovelock's theorem of 1972): it holds in all dimensions (not only in four); it does not require an assumption about the differential order of the desired concomitant of the metric; and it has a more natural physical interpretation.  相似文献   

6.
Der Raum, Carnap’s earliest published work, finds him largely a follower of Husserl. In particular, he holds a distinctively Husserlian conception of the synthetic a priori—a view, I will suggest, paradigmatic of what he would later reject as ‘metaphysics’. His main purpose is to reconcile that Husserlian view with the theory of general relativity. On the other hand, he has already broken with Husserl, and in ways which foreshadow later developments in his thought. Especially important in this respect is his use of Hans Driesch’s Ordnungslehre.  相似文献   

7.
Einstein’s early calculations of gravitational lensing, contained in a scratch notebook and dated to the spring of 1912, are reexamined. A hitherto unknown letter by Einstein suggests that he entertained the idea of explaining the phenomenon of new stars by gravitational lensing in the fall of 1915 much more seriously than was previously assumed. A reexamination of the relevant calculations by Einstein shows that, indeed, at least some of them most likely date from early October 1915. But in support of earlier historical interpretation of Einstein’s notes, it is argued that the appearance of Nova Geminorum 1912 (DN Gem) in March 1912 may, in fact, provide a relevant context and motivation for Einstein’s lensing calculations on the occasion of his first meeting with Erwin Freundlich during a visit in Berlin in April 1912. We also comment on the significance of Einstein’s consideration of gravitational lensing in the fall of 1915 for the reconstruction of Einstein’s final steps in his path towards general relativity.  相似文献   

8.
Conclusion The advent of the general theory of relativity was so entirely the work of just one person — Albert Einstein — that we cannot but wonder how long it would have taken without him for the connection between gravitation and spacetime curvature to be discovered. What would have happened if there were no Einstein? Few doubt that a theory much like special relativity would have emerged one way or another from the researchers of Lorentz, Poincaré and others. But where would the problem of relativizing gravitation have led? The saga told here shows how even the most conservative approach to relativizing gravitation theory still did lead out of Minkowski spacetime to connect gravitation to a curved spacetime. Unfortunately we still cannot know if this conclusion would have been drawn rapidly without Einstein's contribution. For what led Nordström to the gravitational field dependence of lengths and times was a very Einsteinian insistence on just the right version of the equality of inertial and gravitational mass. Unceasingly in Nordström's ear was the persistent and uncompromising voice of Einstein himself demanding that Nordström see the most distant consequences of his own theory.  相似文献   

9.
In his search for a unified field theory that could undercut quantum mechanics, Einstein considered five-dimensional classical Kaluza–Klein theory. He studied this theory most intensively during the years 1938–1943. One of his primary objectives was finding a non-singular particle solution. In the full theory this search got frustrated, and in the x5-independent theory Einstein, together with Pauli, argued it would be impossible to find these structures.  相似文献   

10.
Charles Darwin’s On the Origin of Species has an unusual format. After presenting his theory of Natural Selection in its first four chapters, there follows a series of five chapters presenting a large number of problems and objections to the theory which, he admits, appear overwhelming. Not until chapter 10 does he begin to present what he takes to be the positive evidence for his theory. In this paper I trace the evolution of this structure from its first hints in his Species Notebooks , through the 1842 Sketch and 1844 Essay to the Origin, showing that it reflects a growing awareness on Darwin’s part of what I call ’In Principle Impossible’ arguments against his theory, and of a systematic strategy for disarming them.  相似文献   

11.
We consider various curious features of general relativity, and relativistic field theory, in two spacetime dimensions. In particular, we discuss: the vanishing of the Einstein tensor; the failure of an initial-value formulation for vacuum spacetimes; the status of singularity theorems; the non-existence of a Newtonian limit; the status of the cosmological constant; and the character of matter fields, including perfect fluids and electromagnetic fields. We conclude with a discussion of what constrains our understanding of physics in different dimensions.  相似文献   

12.
I argue that, contrary to folklore, Einstein never really cared for geometrizing the gravitational or (subsequently) the electromagnetic field; indeed, he thought that the very statement that General Relativity geometrizes gravity “is not saying anything at all”. Instead, I shall show that Einstein saw the “unification” of inertia and gravity as one of the major achievements of General Relativity. Interestingly, Einstein did not locate this unification in the field equations but in his interpretation of the geodesic equation, the law of motion of test particles.  相似文献   

13.
In the early days of general relativity, several of Einstein׳s readers misunderstood the role of coordinates or “mesh-system” in ways that threatened the basic predictions of the theory. This confusion largely derived from intrinsic defects of Einstein׳s first systematic exposition of his theory. A few of Einstein׳s followers, including Arthur Eddington, Hermann Weyl, and Max von Laue, identified the interpretive difficulties and solved them by combining a deeply geometrical understanding of the theory with detailed attention to the concrete conditions of measurement.  相似文献   

14.
Einstein learned from the magnet and conductor thought experiment how to use field transformation laws to extend the covariance of Maxwells electrodynamics. If he persisted in his use of this device, he would have found that the theory cleaves into two Galilean covariant parts, each with different field transformation laws. The tension between the two parts reflects a failure not mentioned by Einstein: that the relativity of motion manifested by observables in the magnet and conductor thought experiment does not extend to all observables in electrodynamics. An examination of Ritzs work shows that Einsteins early view could not have coincided with Ritzs on an emission theory of light, but only with that of a conveniently reconstructed Ritz. One Ritz-like emission theory, attributed by Pauli to Ritz, proves to be a natural extension of the Galilean covariant part of Maxwells theory that happens also to accommodate the magnet and conductor thought experiment. Einsteins famous chasing a light beam thought experiment fails as an objection to an ether-based, electrodynamical theory of light. However it would allow Einstein to formulate his general objections to all emission theories of light in a very sharp form. Einstein found two well known experimental results of 18th and 19th century optics compelling (Fizeaus experiment, stellar aberration), while the accomplished Michelson-Morley experiment played no memorable role. I suggest they owe their importance to their providing a direct experimental grounding for Lorentz local time, the precursor of Einsteins relativity of simultaneity, and doing it essentially independently of electrodynamical theory. I attribute Einsteins success to his determination to implement a principle of relativity in electrodynamics, but I urge that we not invest this stubbornness with any mystical prescience.I am grateful to Diana Buchwald, Olivier Darrigol, Allen Janis, Michel Janssen, Robert Rynasiewicz and John Stachel for helpful discussion and for assistance in accessing source materials.  相似文献   

15.
16.
An overlap between the general relativist and particle physicist views of Einstein gravity is uncovered. Noether׳s 1918 paper developed Hilbert׳s and Klein׳s reflections on the conservation laws. Energy-momentum is just a term proportional to the field equations and a ‘curl’ term with identically zero divergence. Noether proved a converse “Hilbertian assertion”: such “improper” conservation laws imply a generally covariant action.Later and independently, particle physicists derived the nonlinear Einstein equations assuming the absence of negative-energy degrees of freedom (“ghosts”) for stability, along with universal coupling: all energy-momentum including gravity׳s serves as a source for gravity. Those assumptions (all but) imply (for 0 graviton mass) that the energy-momentum is only a term proportional to the field equations and a symmetric “curl,” which implies the coalescence of the flat background geometry and the gravitational potential into an effective curved geometry. The flat metric, though useful in Rosenfeld׳s stress-energy definition, disappears from the field equations. Thus the particle physics derivation uses a reinvented Noetherian converse Hilbertian assertion in Rosenfeld-tinged form.The Rosenfeld stress-energy is identically the canonical stress-energy plus a Belinfante curl and terms proportional to the field equations, so the flat metric is only a convenient mathematical trick without ontological commitment. Neither generalized relativity of motion, nor the identity of gravity and inertia, nor substantive general covariance is assumed. The more compelling criterion of lacking ghosts yields substantive general covariance as an output. Hence the particle physics derivation, though logically impressive, is neither as novel nor as ontologically laden as it has seemed.  相似文献   

17.
What if gravity satisfied the Klein–Gordon equation? Both particle physics from the 1920–30s and the 1890s Neumann–Seeliger modification of Newtonian gravity with exponential decay suggest considering a “graviton mass term” for gravity, which is algebraic in the potential. Unlike Nordström׳s “massless” theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman–Cunningham conformal group. It therefore exhibits the whole of Minkowski space–time structure, albeit only indirectly concerning volumes. Massive scalar gravity is plausible in terms of relativistic field theory, while violating most interesting versions of Einstein׳s principles of general covariance, general relativity, equivalence, and Mach. Geometry is a poor guide to understanding massive scalar gravity(s): matter sees a conformally flat metric due to universal coupling, but gravity also sees the rest of the flat metric (barely or on long distances) in the mass term. What is the ‘true’ geometry, one might wonder, in line with Poincaré׳s modal conventionality argument? Infinitely many theories exhibit this bimetric ‘geometry,’ all with the total stress–energy׳s trace as source; thus geometry does not explain the field equations. The irrelevance of the Ehlers–Pirani–Schild construction to a critique of conventionalism becomes evident when multi-geometry theories are contemplated. Much as Seeliger envisaged, the smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities—indeed an unconceived alternative. At least one version easily could have been developed before General Relativity; it then would have motivated thinking of Einstein׳s equations along the lines of Einstein׳s newly re-appreciated “physical strategy” and particle physics and would have suggested a rivalry from massive spin 2 variants of General Relativity (massless spin 2, Pauli and Fierz found in 1939). The Putnam–Grünbaum debate on conventionality is revisited with an emphasis on the broad modal scope of conventionalist views. Massive scalar gravity thus contributes to a historically plausible rational reconstruction of much of 20th–21st century space–time philosophy in the light of particle physics. An appendix reconsiders the Malament–Weatherall–Manchak conformal restriction of conventionality and constructs the ‘universal force’ influencing the causal structure.Subsequent works will discuss how massive gravity could have provided a template for a more Kant-friendly space–time theory that would have blocked Moritz Schlick׳s supposed refutation of synthetic a priori knowledge, and how Einstein׳s false analogy between the Neumann–Seeliger–Einstein modification of Newtonian gravity and the cosmological constant Λ generated lasting confusion that obscured massive gravity as a conceptual possibility.  相似文献   

18.
Halfway through the paper in which he laid down the foundations for the theory of special relativity, Einstein concludes that “the asymmetry mentioned in the Introduction … disappears.” Making asymmetry disappear has proved to be one of Einstein's many significant moves in his annus mirabilis of 1905. This elimination of asymmetry has led many commentators to claim that Einstein was motivated by either an aesthetic or an epistemic argument which gives priority to symmetry over asymmetry. Following closely the development of electrodynamics in the period from 1880 to 1905 and the usage of the related terms reciprocity and symmetry, we suggest a different way of understanding Einstein's motivation and the path he took. In contrast to the received view, we argue that Einstein responded to a debate in the literature on electrodynamics and that he was concerned neither with an aesthetic nor with an epistemic argument; rather, his reasoning was physical in the best sense, and most original. We will show that by providing a new perspective on the relation between electricity and magnetism, Einstein succeeded in bringing the discussion of symmetry in electrodynamics to an end.  相似文献   

19.
In this article, we aim at clarifying the role played by Fizeau’s 1851 experiment, both in the context of discovery and in the context of justification of the special theory of relativity. In 1907 Laue proved that Fresnel's formula was a consequence of the relativistic composition of velocities; since then, Einstein regarded Fizeau's experiment as confirmatory evidence for his theory, and even as a crucial experiment in favor of the relativistic addition of velocities. On the other hand, in the 1920's Einstein stated that this experiment was decisive in the path that led him to the discovery of his theory before 1905, but he did not explain why. We survey all the available evidence on this subject and conclude that the original ether-drag experiment was reinterpreted within a new conceptual framework in which the meaning of the very concept of velocity undergoes a radical change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号