首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
在高温下合成了球型的锂离子二次电池正极材料镍锰酸锂(LiNixMn1-xO2,0相似文献   

2.
LiMn2O4以其价格低、电位高、环境友好、安全性能高等优点,成为最有希望取代LiCoO2的主流材料之一.LiMn2O4的生产制备方法众多, 文中详细介绍了锰酸锂的晶体结构特点,阐述了锰酸锂的各种制备方法,探讨了采用不同的原料、不同的制备方法对提高锰酸锂性能的差异.从电解液方面、尖晶石锰酸锂晶体结构层面分析了其容量衰减的原因,希望能够为锰酸锂材料的研究者提供借鉴,为其生产提供理论依据.  相似文献   

3.
结合在兰州实现锰酸锂正极材料产业化的实际案例,对锰酸锂正极材料在国内的市场需求进行了详细分析,通过技术路线和技术方案的分析,制定出了可行的产品产业化解决方案,并对方案的关键性技术进行了详细论证。另外,通过温度和湿度对产品性能影响的分析,论述了西北地区高原干燥的气候条件改善产品性能指标的优势。  相似文献   

4.
合成了四 (对羟基苯基 )卟啉镍与 meso-四 (2 -羧甲氧基苯基 )卟啉镍 ,并用循环伏安法研究了两种金属卟啉的电化学性质 ,得到了一些有意义的结果  相似文献   

5.
锰酸锂合成的动力学研究(Ⅰ)──氧气气氛   总被引:4,自引:0,他引:4  
用热分析仪测试不同升温速率下,氢氧化锂和二氧化锰在氧气气氛中的差热分析曲线,结合DoyleOzawa法和Kissinger法研究锰酸锂合成的动力学;计算各反应阶段的表观活化能,依次为59462kJ·mol-1,92672kJ·mol-1,163271kJ·mol-1和107524kJ·mol-1·并确定反应级数,频率因子,速率常数,推导出每个反应阶段的动力学方程·为制备尖晶石型锰酸锂提供理论依据,进一步优化工艺条件·  相似文献   

6.
采用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、电池性能测试仪等系统分析了Pechini法合成的LiMxMn2-xO4(M=La,Ce,Nd;x=0,0.02,0.03)的结构、形貌、首次充放电及循环稳定性等.结果表明;除LiCe0.03Mn1.97O4、LiNd0.03Mn1.97O4样品含有微量杂质相(CeO2或Nd2O3)外,其他样品均具有纯的尖晶石型LiMn2O4结构;样品呈规则的球形或近球形,粒径为1.0~2.0μm;采用适量的稀土掺杂可显著提高LiMn2O4样品的首次充放电和循环稳定性能,LiLa0.02Mn1.97O4样品的首次放电容量为123.3 mAh/g,经30次循环充放电后的容量仍保持在112.8 mAh/g,容量保持率为91.5%,远高于相同条件下未掺杂样品的容量保持率.  相似文献   

7.
采用自蔓延燃烧法制备钕离子掺杂锰酸锂(LiMn1.99Nd0.01O4)纳米颗粒,通过XRD、SEM、CV等表征分析了材料的晶体结构、微观形貌和电化学性能.结果表明:钕离子掺杂不影响晶体结构,但可减小LiMn2O4颗粒粒径,进而提高其电化学性能.在0.2C倍率下的放电比容量高达125.6 mAh·g-1.在1C倍率下的首次放电容量为118.4 mAh·g-1,循环100次后的放电比容量为110.4 mAh·g-1,容量保持率为93.2%.  相似文献   

8.
尖晶石型LiMn2O4正极材料的电压平台高、原料来源丰富、生产成本低廉,但由于Jahn-Teller效应导致晶格畸变和Mn3+歧化分解导致过渡金属锰的溶解严重影响电池的循环性能。本文探究了不同Mg2+掺杂量对LiMn2O4正极材料电化学性能的影响。采用高温固相法制备了LiMg((x))Mn((2-x))O4(x=0,0.01,0.03,0.05)样品,并对其组织结构和电化学性能进行分析。结果表明,所有样品均为立方尖晶石结构,呈截断八面体形貌。电化学性能测试表明,当x=0.03时,LiMg0.03Mn1.97O4样品在0.2 C下具有较高的放电比容量和最高的首次库伦效率(98.44%),循环稳定性最佳;在0.5 C下循环100圈后仍具有119.3 mAh/g的放电比容量,容量保持率高达92.62%。  相似文献   

9.
磷酸铁锂正极材料具有比容量大、安全性高、性价比高以及循环寿命长等优点,被认为是最具应用前景的锂离子电池正极材料之一。论述了橄榄石型磷酸铁锂的晶体结构特征以及充放电反应机制,综述了近年来采用葡萄糖、活性碳和石墨烯等不同的碳源进行碳包覆, 硫离子、镁离子、镍离子、氟离子、钒离子、钠离子和银离子等不同金属离子和非金属离子进行离子掺杂以及蒸发诱导自组装法、碳热还原法和喷雾干燥法等不同合成方法进行材料纳米化等改性方式对锂离子电池磷酸铁锂正极材料的影响。最后简要分析了目前改性方法仍存在的问题,并对其前景进行了展望。  相似文献   

10.
首次采用基于复合络合剂柠檬酸和β-环糊精的溶胶凝胶法制备了尖晶石型锰酸锂,并研究了煅烧温度对材料电化学性能的影响。电化学性能表明,700℃煅烧制备的材料具有优异的倍率和循环性能。在3C电流下此材料的首次和第200次放电比容量分别为102mAh/g和90.8mAh/g,容量保持率为89%。  相似文献   

11.
Ni/Co比例对LiCoxNi1-xO2电化学性能的影响   总被引:2,自引:1,他引:2  
采用固相反应法合成了一系列LiCoxNi1-xO2(0≤x≤1)材料,用XRD和电化学实验方法研究了Co3+取代Ni3+对LiNiO2材料电化学性能的影响.结果表明,当Ni/Co比例为8:2时材料具有最好电化学性能,比容量可以达到170~180mAh/g,并且具有好的抗过充性能.  相似文献   

12.
导电聚合物材料具有原料价格低廉、比重轻、具可塑性、微结构便于控制等优点,在锂离子电池方面具有应用的潜力.聚萘是一种良好的导电高分子,它具有许多优良的光电性能.该文以3,4,9,10-二苯四甲酸酐为原料,在一定条件下,经高温煅烧合成一种石墨状聚萘,并以这种石墨状聚萘为锂离子电池正极材料,对其进行探索性研究.通过红外光谱、拉曼光谱、热失重、扫描电镜等分析手段,对合成的石墨状聚萘做了相应的结构和外貌表征;利用恒流充放电、循环伏安和交流阻抗等电化学方法来研究石墨状聚萘的电化学性能.结果表明,通过上述合成方法,成功合成了石墨状聚萘,经电化学性能测试发现石墨状聚萘有较大的放电容量、良好的循环稳定性,在电流密度为100 mAh · g-1的条件下,首次放电容量高达281.3 mAh·g-1,100次循环后,容量仍保持在188.4 mAh·g-1,容量保持率高达66.97;.因此,石墨状聚萘是一种较为理想的锂离子电池的正极材料.  相似文献   

13.
研究了磷酸锰锂(LiMnPO4)微纳米材料的水热合成过程及其电化学特性。在水热合成过程中,改变各种参数,如反应温度、反应物LiOH浓度、铁元素掺杂等,制备一系列LiMn-PO4粉体。使用X射线衍射仪(XRD)、扫描电镜(SEM)等分析手段对其进行分析表征,获得了优化的水热合成LiMnPO4工艺,制备了性能稳定的LiMnPO4正极材料。研究发现,水热合成温度是形成LiMnPO4物相的主要因素,在140℃以上温度合成时,可以得到纯相LiMnPO4;LiOH浓度对合成物相的影响不大,但是它改变了晶体的生长习性,导致粉体显微形貌从针状向颗粒状、片状转化,材料的电化学性能随之增加;纯相LiMnPO4的电化学性能无法满足应用需求,可以通过Fe元素掺杂形成固溶体,使LiMnPO4的电化学性能得到一定的提升,有望在动力电池领域得到应用。  相似文献   

14.
锂离子电池正极材料锂镍钴氧化物的制备   总被引:2,自引:0,他引:2  
以Ni0 .8Co0 .2 (OH) 2 和LiOH·H2 O为原料 ,采用固相烧结法合成了锂离子电池正极材料LiNi0 .8Co0 .2 O2 ,并用正交试验法对反应温度和反应时间等因素进行了优化 .结果表明 ,通过严格控制各影响因素可以制得结构和性能优良的锂镍钴氧化物正极材料 ,其首次放电比容量大于 1 6 0mA·h/ g ,松装密度大于 2 .0 g/cm3.  相似文献   

15.
锂离子电池正极材料LiFePO4的合成及电化学性能   总被引:1,自引:0,他引:1  
采用固相合成法在不同温度制度下合成掺杂碳的LiFePO4正极材料,计算出各样品的结构参数并对各样品进行电化学测试·结构参数的计算结果表明:合成温度升高,样品的结晶程度更好,结构更紧凑,更趋稳定·电化学测试结果说明:700℃合成的产物具有良好的电化学性能,在0 1C倍率下放电,其室温初始放电容量为140 4mAh/g,循环10次后容量衰减较小·此条件合成的LiFePO4放电容量与目前工业化生产的LiCoO2相当,具有良好的应用前景·  相似文献   

16.
采用高温固相浸渍法合成了多元复合掺杂的尖晶石锰酸锂正极材料LiCo0.02La0.01Mn1.97O3.98Cl0.02.采用X衍射分析仪、扫描电镜、马尔文激光粒径分析仪、电化学工作站以及充放电分析仪等设备表征了材料的电化学性能与特性.XRD表明所合成的材料具有良好的尖晶石型结构特征,所掺杂是元素Co,La分别占据了元素Mn的位置,元素Cl占据了元素O的位置.合成材料LiCo0.02La0.01Mn1.97O3.98Cl0.02比材料LiMn2O4有更好的电化学特性,150次循环后的比容量保持率在91.7%.  相似文献   

17.
用化学方法合成用于锂离子动力电池正极的新型高电压高容量复合金属氧化物材料Li(CoxNiyMn1-x-y)O2试制了具有良好热稳定性的高功率 8 Ah 锂离子动力 电池。在研究了该电池的电化学性能后, 研制了用于混合动力电动车辆的电池系统并进行了车载实验。结果表明该 电池系统在深度放电条件下不仅显现出十分优越的循环性能和一致性, 经过模拟工况测试后的数据还表明单体电池升温最高仅为 5℃, 即电池系统还具有良好的热稳定性, 因此该电池系统是适合用于混合动力电动汽车的。  相似文献   

18.
采用高温固相法合成锂离子电池用LiCoPO4/C复合正极材料.通过X射线衍射(XRD)和扫描电镜(SEM)对材料的微观结构和表面形貌进行分析.电化学测试结果表明,在0.1 C倍率下,LiCoPO4/C首次放电容量达到75 mAh.g-1,50次循环容量保持92%.  相似文献   

19.
为研究离子掺杂对锂离子正极材料LiNi1/3Co1/3Mn1/3O2的影响,采用氢氧化物共沉淀法制备了Ti4+掺杂改性的锂离子正极材料LiNi1/3-1/40Co1/3Mn1/3Ti1/40O2、LiNi1/3-Co1/3-1/40Mn1/3Ti1/40O2和LiNi1/3Co1/3Mn1/3-1/40Ti1/40O2,并运用X射线衍射仪和扫描电子显微镜对Ti掺杂改性后正极材料的晶型和微观结构进行表征,通过高精度电池性能检测系统对正极材料的电化学性能进行检测.结果表明:Ti分别取代Ni、Co和Mn对三元复合正极材料进行掺杂改性后,改性材料都保持典型的α-NaFeO2层状结构,且晶型良好;LiNi1/3-Co1/3Mn1/3-1/40Ti1/40O2轮廓最分明,且形貌均一;3种改性材料的电化学性能均有一定程度的提高,其中LiNi1/3Co1/3Mn1/3-1/40Ti1/40O2提高最为明显,在0.1 C、1.0 C和2.0 C倍率下其首次放电比容量分别为145.35、140.79和125.60 mA.h/g,1.0 C倍率下循环30次后的容量保持率为88.06%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号