首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 93 毫秒
1.
采用共同沉淀和溶液浸渍相结合的方法合成了锂离子二次电池正极材料Li1 xCo0·2Ni0·8O2(0≤x≤0·10)。用粉末X射线衍射(XRD)、扫描电子显微镜(SEM)、电感耦合等离子体-原子发射光谱(ICP-AES)、电化学等方法对生成物进行了元素组成、形貌、物相与结构、充放电循环等分析。分析结果表明所得到的生成物为球形颗粒,粒径大小均匀,其结构为α-NaFeO2型的层状结构,生成物中无杂质相,生成物的首次充放电效率高、比容量高、循环性能好。在2·00mA/cm2电流密度下,首次放电容量可达183mAh/g,50次循环的保持率为93·4%。  相似文献   

2.
对LiC0.2Ni0.8O2正极材料的合成条件进行了研究.实验表明,该材料在空气气氛中合适的合成温度为700℃,反应时间为12h,在该反应条件下正极材料晶体结构有序化程度及晶体结构完善性均比较理想,其电化学性能较好.在通氧条件下制备得到的正极材料LiC0.2Ni0.8O2具有良好的电化学性能,其初始放电容量175mAh/g,经过50次充放电循环后放电容量为153mAh/g,而且正极材料中锂离子的扩散系数有了较大的增加,这有利于正极材料中锂离子的迁入和脱嵌,因此LiC0.2Ni0.8O2正极材料具有良好的充放电循环性能。  相似文献   

3.
研究了高温固相法合成锂离子电池正极材料LiNi0.8Co0.2O2时原材料、气氛、温度、时间、Li:(Ni Co)化学计量比例、氧气流量、二次烧结等参数对制备电极活性材料结构和电性能的影响,使用其优化后的工艺参数,制备出容量为170mAb/g的LiNi0.8Co0.2O2,并对此正极材料组成的电池性能进行了测试。  相似文献   

4.
用2次干燥化学共沉淀法制得高密度前驱体Ni0.8Co0.2(OH)2,使之与LiOH.H2O混合经过2个恒温阶段烧结(600℃恒温6 h、850℃恒温24 h)得到LiNi0.8Co0.2O2材料,探讨了镍源、Li/(Ni+Co)摩尔比、合成温度、合成时间等因素对产品的影响,从而优化了LiNi0.8Co0.2O2的合成工艺.所得非球形LiNi0.8Co0.2O2粉末振实密度高达2.94 g/cm3,X射线衍射分析表明该材料具有规整的层状NaFeO2结构,充放电测试表明材料具有良好的电化学性能.  相似文献   

5.
熔融盐法合成球形锂离子电池正极材料LiNi_(0.8)Co_(0.2)O_2   总被引:1,自引:1,他引:1  
采用热分析法对不同组成的LiOH-LiNO3二元体系进行研究,绘制了具有最低共熔点的该二元体系T-x相图,该体系的最低共熔点为175.7℃.利用低共熔混合物LiNO3-LiOH为锂盐,与前驱体球形Ni0.8Co0.2(OH)2混合烧结制备出了球形锂离子电池正极材料LiNi0.8Co0.2O2.探讨了Li/(Ni+Co)摩尔比、合成温度、合成时间等因素对产品的影响.X射线衍射分析表明合成的材料具有规整的层状NaFeO2结构,SEM表明所得材料为球形.充放电测试表明在3.0~4.3的电压范围内,首次放电比容量可达170 mAh.g-1,充放电效率为95.5%.结果表明采用该工艺可以制备出电化学性能良好的LiNi0.8Co0.2O2正极材料.  相似文献   

6.
目的:制备正极材料Li[Li_0.1Ni_(0.45-x)Mn_(0.45-x)Sn_2x]O_2微米球,并研究其电化学性能与掺杂Sn^2+的物质的量的关系。方法:通过共沉淀法以SnSO_4、Na_2CO_3、MnSO_4?H_2O和NiSO_4?6H_2O为原料,制备前驱物(Ni_(0.45-x)Mn_(0.45-x)Sn_2x)(CO_3)_0.9,与Li_2CO_3充分混合,高温煅烧得到正极材料Li[Li_0.1Ni_(0.45-x)Mn_(0.45-x)Sn_2x]O_2微米球。结果:正极材料的物相用X射线衍射(XRD)进行检测,表观形貌利用扫描电子显微镜(SEM)进行研究,采用恒流充放电测试对电池电化学性能进行分析。结论:添加Sn^2+可以有效提高Li[Li_0.1Ni_(0.45-x)Mn_(0.45-x)Sn_2x]O_2系列锂离子正极材料的电化学性能。  相似文献   

7.
通过共沉淀-高温固相法合成LiNi0.2Li0.2Mn0.6O2固溶体正极材料,并通过球磨-低温热解对LiNi0.2Li0.2Mn0.6O2进行碳包覆;通过XRD,SEM和TEM对包覆前后的样品进行分析和表征.结果表明:球磨包覆前后样品具有层状固溶体结构,但包覆后颗粒粒径有所减小;包覆后LiNi0.2Li0.2Mn0.6O2 0.1C的放电比容量由包覆前的219 mA·h/g增加到246 mA·h/g,5C的放电比容量由包覆前的60 mA·h/g增加到包覆后的125 mA·h/g.50次循环后容量保持率由94.7%提高至97.8%.包覆后正极材料电荷转移阻抗从原来的62 Ω减小至37 Ω.  相似文献   

8.
高密度球形LiNi_(0.8)Co_(0.2)O_2的制备及性能   总被引:6,自引:0,他引:6  
采用控制结晶法合成球形 β- Ni0 .8Co0 .2 (OH) 2 ,与L i OH.H2 O 混合 ,在 75 0℃通 O2 热处理 8h 合成球形L i Ni0 .8Co0 .2 O2 粉末。用 X光衍射和扫描电镜分析对 β- Ni0 .8Co0 .2 (OH) 2 和 L i Ni0 .8Co0 .2 O2 粉末的结构进行了表征。充放电测试表明该球形 L i Ni0 .8Co0 .2 O2 正极材料具有优良的电化学性能 :首次充电比容量为 2 17m A.h.g- 1 ,放电比容量为172 m A.h.g- 1 ,5 0次充放电循环后保持初始放电比容量的97.5 %。该球形 L i Ni0 .8Co0 .2 O2 粉末的振实密度高达 2 .8g.cm- 3,远高于一般非球形 L i Ni0 .8Co0 .2 O2 正极材料。高密度球形 L i Ni0 .8Co0 .2 O2 正极材料用于锂离子电池可以显著提高电池的能量密度。  相似文献   

9.
LiNi_(0.8)Co_(0.2)O_2的表面修饰及性能   总被引:3,自引:0,他引:3  
锂离子电池正极材料和电解液之间的恶性相互作用引起正极材料和电池性能的劣化。将 L i Ni0 .8Co0 .2 O2 ,L i OH.H2 O和 H3BO3以摩尔比 10 0 :1:2均匀混合 ,5 0 0℃热处理 10 h,在 L i Ni0 .8Co0 .2 O2 表面包覆上一层 L i2 O- 2 B2 O3玻璃层。用 X光电子能谱、扫描电镜和 X光衍射分析对包覆前后 L i Ni0 .8Co0 .2 O2 的结构进行了表征。结果表明 ,表面修饰有效地抑制了 L i Ni0 .8Co0 .2 O2 和电解液之间的恶性相互作用 ,材料的实际比容量提高 ,充放电循环稳定性改善 ,自放电速率减小。表面修饰处理是改善锂离子电池正极材料综合性能的有效途径  相似文献   

10.
利用高温高压合成方法合成一种新的具有混合价态的钙钛矿氧化物LaTi0.8Li0.2O3.XRD测量表明,样品为单相的立方结构.EPR测试表明,Ti离子为+3、+4混合价.IR测量表明,B-O键伸缩振动谱带没有发生劈裂.高温高压可以改变Ti离子的价态.  相似文献   

11.
研究应用于锂二次电池阴极的新型高能量密度存贮材料 Li(AlxCo1-x)O2的充放电特性, 并与相同 条件下制备的传统材料LiCoO2进行对比. 结果表明, 700 ℃烧结的Li(Al 0.3Co0.7)O2有较好的 充放电平台, 电化学容量大于同样条件下制备的LiCoO2.  相似文献   

12.
以过渡金属乙酸盐和氢氧化锂为原料,采用共沉淀方法制备了锂离子电池富锂正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2并对该材料进行表面包碳.X射线衍射技术(XRD)、扫描电子显微技术(SEM)实验数据表明,该材料具有层状α-NaFeO2 结构.包碳后材料结构没有变化,表面覆盖上一层纳米级别的颗粒.电化学性能测试结果表明该材料包碳后在0.1 C (1 C=180 mA/g),2.0 ~ 4.8 V电位范围内首次放电比容量高达259.0 mAh/g.包碳后首次放电比容量,倍率性能,循环性能均得到提高.采用电化学阻抗谱(EIS)研究包碳前后该材料的传荷阻抗,结果显示碳包覆材料的传荷阻抗明显减小,电子电导率得到提高,从而提高电化学性能.  相似文献   

13.
为研究复合材料氧离子导电体的导电特性,采用化学共沉淀法制备Ce0.8Sm0.2O1.9-La0.9Sr0.1Ga0.8Mg0.2O2.85纳米复合粉体,并获得复合陶瓷材料.通过X线衍射仪和扫描电子显微镜对复合材料的物相组成与微观结构进行分析,利用交流阻抗测试研究材料的离子导电性.研究结果表明:煅烧复合粉体的平均晶粒尺寸为15 nm;复合材料的导电性均明显高于复合组元的单相材料的导电性;La0.9Sr0.1Ga0.8Mg0.2O2.85中La2O3过量3%(质量分数)的复合材料体现最好的导电性,在700℃时的导电率为0.106 S/cm.通过交流阻抗谱分析晶粒、晶界特性,探讨复合电解质材料的导电机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号