首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金刚石膜磁阻效应   总被引:1,自引:0,他引:1  
在F-S薄膜理论的基础上,考虑了晶格散射和杂质散射,通过求解驰豫近似下的Boltzmann方程,计算了P型单晶半导体金刚石膜(矩形)在球形能带下的电导率及考虑金刚石的轻空穴带、重穴穴带和分裂带为并联电阻模型时的磁阻,给出了磁阻和金刚石膜厚度,磁场强度、迁移率的关系。研究表明:金刚石的轻空穴带、重空穴带和分裂带对磁阻的影响不相同。厚膜的磁阻和块材的磁阻相差不大,磁阻和温度、磁场强度,迁移率有密切关系。  相似文献   

2.
Superconductivity at 52 K in hole-doped C60   总被引:4,自引:0,他引:4  
Schön JH  Kloc C  Batlogg B 《Nature》2000,408(6812):549-552
Superconductivity in electron-doped C60 was first observed almost ten years ago. The metallic state and superconductivity result from the transfer of electrons from alkaline or alkaline-earth ions to the C60 molecule, which is known to be a strong electron acceptor. For this reason, it is very difficult to remove electrons from C60--yet one might expect to see superconductivity at higher temperatures in hole-doped than in electron-doped C60, because of the higher density of electronic states in the valence band than in the conduction band. We have used the technique of gate-induced doping in a field-effect transistor configuration to introduce significant densities of holes into C60. We observe superconductivity over an extended range of hole density, with a smoothly varying transition temperature Tc that peaks at 52 K. By comparison with the well established dependence of Tc on the lattice parameter in electron-doped C60, we anticipate that Tc values significantly in excess of 100 K should be achievable in a suitably expanded, hole-doped C60 lattice.  相似文献   

3.
Microstructures of metallic film and diamond growth from Fe-Ni-C system   总被引:4,自引:0,他引:4  
The microstructures of metallic film surrounding diamond have been systemically studied using the transmission electron microscopy (TEM) and the atom force microscopy (AFM). The film can be divided into three layers (inner layer near diamond, external layer near graphite and middle layer). The graphite cannot be directly transformed into diamond in the film at HTHP; there exists a parallel relationship between (−111) of γ-(Fe,Ni) and (110) of Fe3C in the inner layer; the sawtooth-like step morphology found by AFM on the film is similar to that of corresponding diamond surface. A new model for diamond growth at HPHT is proposed from the parallel relationship and sawtooth-like step morphology. It is believed that Fe3C may be a transitional phase in the course of diamond growth, γ-(Fe,Ni) in the inner layer can absorb carbon atom groups with lamella structure from Fe3C, and then the carbon groups stack on growing diamond.  相似文献   

4.
为提高叠层材料制孔质量満足装配与连接的要求,对CFRP/A1叠层材料进行了钻削试验研究。研究了不同叠层顺序、不同刀具材料在变换加工参数时对轴向力的影响。结果表明:从复合材料侧钻入时,由于铝合金对复合材料产生的支撑作用制孔质量得到了明显提高;从铝合金侧钻入能获得更低的钻削轴向力;相比无涂层及金刚石涂层钻头。类金刚石涂层刀具在钻削叠层材料时能获得更好的孔壁质量。  相似文献   

5.
Doping semiconductor nanocrystals   总被引:1,自引:0,他引:1  
Erwin SC  Zu L  Haftel MI  Efros AL  Kennedy TA  Norris DJ 《Nature》2005,436(7047):91-94
Doping--the intentional introduction of impurities into a material--is fundamental to controlling the properties of bulk semiconductors. This has stimulated similar efforts to dope semiconductor nanocrystals. Despite some successes, many of these efforts have failed, for reasons that remain unclear. For example, Mn can be incorporated into nanocrystals of CdS and ZnSe (refs 7-9), but not into CdSe (ref. 12)--despite comparable bulk solubilities of near 50 per cent. These difficulties, which have hindered development of new nanocrystalline materials, are often attributed to 'self-purification', an allegedly intrinsic mechanism whereby impurities are expelled. Here we show instead that the underlying mechanism that controls doping is the initial adsorption of impurities on the nanocrystal surface during growth. We find that adsorption--and therefore doping efficiency--is determined by three main factors: surface morphology, nanocrystal shape, and surfactants in the growth solution. Calculated Mn adsorption energies and equilibrium shapes for several nanocrystals lead to specific doping predictions. These are confirmed by measuring how the Mn concentration in ZnSe varies with nanocrystal size and shape. Finally, we use our predictions to incorporate Mn into previously undopable CdSe nanocrystals. This success establishes that earlier difficulties with doping are not intrinsic, and suggests that a variety of doped nanocrystals--for applications from solar cells to spintronics--can be anticipated.  相似文献   

6.
C60在再构的金刚石(100)表面沉积的计算机模拟研究   总被引:1,自引:0,他引:1  
用分子动力学模拟的方法和Tersoff多体势函数对低能入射的C60分子在再构的金刚石表面沉积的过程进行模拟研究。以C60初始入射能量为30eV和60eV垂直于表面入射时,入射的C60分子没有多金刚石表面反弹出来,而是与金刚石表面相互吸引而导致C60分子沉积在金刚石的表面。  相似文献   

7.
本文采用等光强表面光伏法对掺锡的n/n~ GaAS液相外延层空穴扩散长度Lp和施主浓度N_D。关系作了测量,求得可供器件设计参考的经验公式.把Lp换算为空穴寿命τ_p后,用公式τ_p~(-1)=τ_(HSP)~(-1) Brn Cn n~2拟合了τ_p和电子浓度n的关系曲线,算出由带隙内复合中心所决定的少子寿命τHSR、带间辐射复合系数Br和带间俄歇复合系数Cn。  相似文献   

8.
Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.  相似文献   

9.
通过对电子传输层和空穴传输层的共同掺杂,达到提高有机发光二极管(DLED)电流效率的目的。与常规的在电子传输层中掺杂有机染料的掺杂器件相比,本实验是在Alq(电子传输层材料)与NPB(空穴传输层材料)形成的均匀互掺有源层中,再掺杂染料Rubrene。此种结构,其有源层能有效地限载流子而增加电子和空穴载流子相遇的几率,进而提高复合效率,使电流效率明显提高。同时,有源层的连续生长避免了有机层间界面的形成,改善了器件的稳定性。比较此结构器件与常规掺杂器件的特性,并对其发射机理进行讨论。  相似文献   

10.
单层高温钎焊超硬磨料砂轮具有电镀砂轮无法比拟的优异磨削性能。在真空条件下用Ni-Cr合金做钎料进行了钎焊单层金刚石砂轮的实验研究,实现了金刚石与钢基体间牢固的化学冶金结合。扫描电镜X射线能谱,结合X射线衍射结构分析发现,在金刚石界面上有Cr的碳化物Cr3C2和Cr7C3存在,而钢基体结合界面上则生成有(FexCry)C,这应是金刚石与钢基体之间具有较高结合强度的主要原因,通过磨削实验验证了金刚石确实有很高的把持强度。  相似文献   

11.
Spark plasma sintering was used to fabricate Al/diamond composites. The effect of sintering temperature on the microstructure and thermal conductivity (TC) of the composites was investigated with the combination of experimental results and theoretical analysis. The composite sintered at 550℃ shows high relative density and strong interfacial bonding, whereas the composites sintered at lower (520℃) and higher (580–600℃) temperatures indicate no interfacial bonding and poor interfacial bonding, respectively. High relative density and strong interfacial bonding can maximize the thermal conductivity of Al/diamond composites, and taking both effects of particle shape and inhomogeneous interfacial thermal conductance into consideration can give a fairly good prediction of composites’ thermal conduction properties.  相似文献   

12.
Organic solar cells based on copper naphthalocyanine(CuNc) and fullerene(C60) were fabricated, and their photovoltaic properties were investigated. C60 and CuNc were used as n-type and p-type semiconductors, respectively. In addition, the effect of Au nanoparticle addition on a hole transfer layer was investigated, and the power conversion efficiency of the devices was improved after blending the Au nanoparticles into the hole transport layer. Nanostructures of Au nanoparticles were investigated by transmission electron microscopy and X-ray diffraction. Energy levels of molecules were calculated by molecular orbital calculations, and the nanostructure and electronic properties were discussed.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

13.
The physical properties of lightly doped semiconductors are well described by electronic band-structure calculations and impurity energy levels. Such properties form the basis of present-day semiconductor technology. If the doping concentration n exceeds a critical value n(c), the system passes through an insulator-to-metal transition and exhibits metallic behaviour; this is widely accepted to occur as a consequence of the impurity levels merging to form energy bands. However, the electronic structure of semiconductors doped beyond n(c) have not been explored in detail. Therefore, the recent observation of superconductivity emerging near the insulator-to-metal transition in heavily boron-doped diamond has stimulated a discussion on the fundamental origin of the metallic states responsible for the superconductivity. Two approaches have been adopted for describing this metallic state: the introduction of charge carriers into either the impurity bands or the intrinsic diamond bands. Here we show experimentally that the doping-dependent occupied electronic structures are consistent with the diamond bands, indicating that holes in the diamond bands play an essential part in determining the metallic nature of the heavily boron-doped diamond superconductor. This supports the diamond band approach and related predictions, including the possibility of achieving dopant-induced superconductivity in silicon and germanium. It should also provide a foundation for the possible development of diamond-based devices.  相似文献   

14.
为提高硅半导体器件的正向导电特性,文中对器件浓硼扩散、磷扩散和烧结铝电极后P~+-P区掺杂浓度分布、少子寿命等因素的影响进行了实验研究.结果表明:对于烧铝电极器件浓硼扩散改善压降作用主要取决于能否提高器件的少子寿命;磷扩散工艺不当,引起结片阳极面反型,会造成正向压降过高而导致废品;采用烧结铝电极工艺形成的器件,铝硅接触处半导体表面浓度约为10~(18)个/cm~3,与原始表面浓度无明显关系;用P~+取代P~+-P区对降低压降明显有效.对以上实验结果,作者应用P—N结正向导电理论进行了分析和研讨.  相似文献   

15.
 以氮化镓(GaN)、碳化硅(SiC)、金刚石等为代表的第三代半导体具有大的禁带宽度、高击穿电场、高饱和电子速率、高热导率以及具有高的位移阈能,耐高温、耐辐照能力,在核装置运行监测、空间探测、高能粒子物理探测等领域具有重要的应用潜力。介绍了第三代半导体的相关性质、辐射探测器主要制备方法以及不同类型辐射探测器的研究进展,展望了第三代半导体在辐射探测方面的发展趋势。提出第三代半导体辐射探测器的出现必然会促进核科学、空间探测、粒子及高能物理等方面的研究,对于国家提升核心竞争力具有重要的推动作用。  相似文献   

16.
过渡金属掺杂的纳米材料具有高效、稳定和可调谐的可见-近红外发射光谱的特点,尤其是由于大的斯托克斯位移而抑制了发光材料自吸收的问题,已经成为光学材料中一个重要的分支。回顾了关于Mn离子掺杂纳米晶研究进展中的几个关键问题。得到晶核掺杂和生长掺杂方式相比于传统的"一锅法"在制备方式更有优势;从回顾关于Mn掺杂机理上的各种解释和在宿主纳米晶中引入大量的掺杂剂所面临的困难中,得出要获得掺杂浓度可控的量子点需要考虑纳米晶表面自清洁效应,纳米晶形状、晶体结构、晶面、表面活性剂以及Mn离子与宿主阳离子的尺寸差别引入的晶格压力等关键因素;利用理论和实验深刻解释了Mn离子的发光机理,指出宿主到Mn离子的高能量转移速率是获得高效的Mn离子发光的关键因素。通过对掺杂量子点的制备、掺杂机理以及发光机理的综合探讨,为制备掺杂浓度和掺杂位置可控的光学性能优良的掺杂量子点方面的研究提供参考。  相似文献   

17.
利用热丝大面积金刚石薄膜气相合成(CVD)装备制备了复合金刚石薄膜,并对其表面和断面分别进行了扫描电镜(SEM),原子力显微镜(AFM)和Raman光谱表征,研究了该复合结构的介电性能,利用共振电路测量了高频下薄膜的介质损耗与频率的关系,结果表明,复合结构由普通多晶金刚石薄膜和纳米金刚石薄膜组成,薄膜的表层结构体现了纳 米金刚石的特征,复合金刚石薄膜不仅具有表面光滑的优点,介电性能也接近于常规的多晶金刚石薄膜,是一种较好的电子材料,可应用于金刚石薄膜半导体器件的制备。  相似文献   

18.
V掺杂CrSi2能带结构的第1性原理计算   总被引:1,自引:0,他引:1  
 采用基于第1性原理的密度泛函理论(DFT)赝势平面波方法和广义梯度近似,计算了V掺杂CrSi2体系的能带结构和态密度,计算结果表明,本体CrSi2是具有ΔEg=0.35eV狭窄能隙的间接带隙半导体,其费米面附近的态密度主要由Cr的3d层电子和Si的3p层电子的态密度决定;V替代Cr掺杂后,费米能级进入价带,费米面插在价带的中间,带隙变窄,且间接带隙宽度ΔEg=0.25eV;掺杂后费米面附近的电子能态密度则由Cr的3d层电子、V的3d层电子和Si的3p层电子的态密度共同决定,掺杂后V原子成为受主,在价带顶附近贡献了一定数量的空穴,使掺杂后CrSi2的导电类型变为p型,提高了材料的电导率.  相似文献   

19.
SnS is a promising Ⅳ-Ⅵ semiconductor,which is very less explored for diluted magnetic semiconducting and dielectric applications.In this study,the Ni doping(x_(Ni)=0-10mol%) effects on SnS host lattice were investigated.A simple and low cost co-precipitation technique was employed to grow Ni doped SnS powders.The X-ray diffraction confirmed single phase orthorhombic structure with a nano-crystalline nature that was further verified through the surface structure observed by scanning electron microscopy.Near edge x-ray absorption fine structure spectroscopy revealed a shift in the Ni absorption edge towards higher energy,depicting the formation of Ni~(+3) oxidation state.The impedance measurements,in the frequency range 1 kHz to 20 MHz,depict that owing to the excellent sensitivity to the electromagnetic radiations at the low energy,the Ni doped SnS finds potential applications in various energy related devices.Vibrating sample magnetometer measurements have elucidated room temperature ferromagnetism,which depicts potential memory device applications.  相似文献   

20.
Diamond reinforced copper (Cu/diamond) composites were prepared by pressure infiltration for their application in thermal management where both high thermal conductivity and low coefficient of thermal expansion (CTE) are important. They were characterized by the microstructure and thermal properties as a function of boron content, which is used for matrix-alloying to increase the interfacial bonding between the diamond and copper. The obtained composites show high thermal conductivity (>660 W/(m·K)) and low CET (<7.4×10-6 K-1) due to the formation of the B13C2 layer at the diamond-copper interface, which greatly strengthens the interfacial bonding. Thermal property measurements indicate that in the Cu-B/diamond composites, the thermal conductivity and the CTE show a different variation trend as a function of boron content, which is attributed to the thickness and distribution of the interfacial carbide layer. The CTE behavior of the present composites can be well described by Kerner’s model, especially for the composites with 0.5wt% B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号