首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cysteine proteinases are important not only in the intracellular catabolism of peptides and proteins and in the processing of prohormones and proenzymes, but also in the penetration of normal human tissue by malignant cells and possibly microorganisms, including viruses. Cystatin C is a human cysteine proteinase inhibitor present in extracellular fluids. We have synthesized peptide derivatives mimicking the proposed proteinase-binding centre of cystatin C and find that they irreversibly inhibit cysteine proteinases. Several bacteria produce proteinases, so we tested a tripeptide derivative (Z-LVG-CHN2) for in vitro anti-bacterial activity against a large number of bacterial strains belonging to thirteen different species. It was found to inhibit specifically the growth of all strains of group A streptococci. The susceptibility of these human pathogens to the peptide was compared with that to well-established anti-streptococcal antibiotics such as tetracycline and bacitracin. Moreover, the peptide was active in vivo against group A streptococci: mice injected with lethal doses of these bacteria were cured by a single injection of Z-LVG-CHN2. The cysteine proteinase produced by group A streptococci was isolated and found to be inhibited by Z-LVG-CHN2; moreover, excess proteinase relieved the growth inhibition caused by the peptide derivative, suggesting that the antibacterial activity of Z-LVG-CHN2 is due to inhibition of this cysteine proteinase. This strategy of blocking proteinases with peptide derivatives that mimic naturally occurring inhibitors could be useful in the construction of new agents against other microorganisms, including viruses.  相似文献   

2.
Animals approach stimuli that predict a pleasant outcome. After the paired presentation of an odour and a reward, Drosophila melanogaster can develop a conditioned approach towards that odour. Despite recent advances in understanding the neural circuits for associative memory and appetitive motivation, the cellular mechanisms for reward processing in the fly brain are unknown. Here we show that a group of dopamine neurons in the protocerebral anterior medial (PAM) cluster signals sugar reward by transient activation and inactivation of target neurons in intact behaving flies. These dopamine neurons are selectively required for the reinforcing property of, but not a reflexive response to, the sugar stimulus. In vivo calcium imaging revealed that these neurons are activated by sugar ingestion and the activation is increased on starvation. The output sites of the PAM neurons are mainly localized to the medial lobes of the mushroom bodies (MBs), where appetitive olfactory associative memory is formed. We therefore propose that the PAM cluster neurons endow a positive predictive value to the odour in the MBs. Dopamine in insects is known to mediate aversive reinforcement signals. Our results highlight the cellular specificity underlying the various roles of dopamine and the importance of spatially segregated local circuits within the MBs.  相似文献   

3.
R Saint  B Kalionis  T J Lockett  A Elizur 《Nature》1988,334(6178):151-154
Homoeo-box genes play a central role in the regulation of embryogenesis in Drosophila melanogaster. Their widespread phylogenetic distribution, and the tissue and stage specificity of their expression in other organisms, argue that they play a general and significant role in animal development. In D. melanogaster, all homoeo-box genes characterized to date are involved in major aspects of embryogenesis. We report here the molecular characterization of a Drosophila homoeo-box gene that has no apparent involvement in early embryogenesis. The gene appears to be rough, a gene implicated in pattern formation in the developing eye. It is expressed in cells within, and posterior to, the morphogenetic furrow, the site of the primary pattern forming events in the developing retina, and also in a region of the brain of the third instar larva. We have found no genetic or molecular evidence of a role for this gene in other aspects of fly development.  相似文献   

4.
5.
Guo HF  Tong J  Hannan F  Luo L  Zhong Y 《Nature》2000,403(6772):895-898
The tumour-suppressor gene Neurofibromatosis 1 (Nf1) encodes a Ras-specific GTPase activating protein (Ras-GAP). In addition to being involved in tumour formation, NF1 has been reported to cause learning defects in humans and Nf1 knockout mice. However, it remains to be determined whether the observed learning defect is secondary to abnormal development. The Drosophila NF1 protein is highly conserved, showing 60% identity of its 2,803 amino acids with human NF1 (ref. 12). Previous studies have suggested that Drosophila NF1 acts not only as a Ras-GAP but also as a possible regulator of the cAMP pathway that involves the rutabaga (rut)-encoded adenylyl cyclase. Because rut was isolated as a learning and short-term memory mutant, we have pursued the hypothesis that NF1 may affect learning through its control of the Rut-adenylyl cyclase/cAMP pathway. Here we show that NF1 affects learning and short-term memory independently of its developmental effects. We show that G-protein-activated adenylyl cyclase activity consists of NF1-independent and NF1-dependent components, and that the mechanism of the NF1-dependent activation of the Rut-adenylyl cyclase pathway is essential for mediating Drosophila learning and memory.  相似文献   

6.
Hong ST  Bang S  Hyun S  Kang J  Jeong K  Paik D  Chung J  Kim J 《Nature》2008,454(7205):771-775
Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants.  相似文献   

7.
DeLotto R  Spierer P 《Nature》1986,323(6090):688-692
The maternal effect gene snake is required for the establishment of the dorsal-ventral axis during the embryonic development of Drosophila. The molecular cloning of the gene and analysis of a complementary DNA sequence suggest that the gene encodes a serine protease which is structurally similar to proteases involved in blood clotting, peptide processing, and complement fixation pathways.  相似文献   

8.
Astrocytes play an important role in the formation of glial scars. In order to investigate the effect of inhibitingGFAP gene expression on normal, reactive astrocytes and on glial scar formation, the efficiency of the recombinant antisenseGFAP retrovirus (PLBskG) on the growth, cell cycle, morphology andGFAP gene expression of astrocytesin vitro and on the formation of glial scarsin vivo has been studied by cell growth curves, flow cytometry, immunocytochemistry,in situ hybridization, RT-PCR and Southern blot. The results confirm the recombinant retrovirus (PLBskG) produced growth suppression and G1 arrest of the normal and injured astrocytes. The infected cells become round or ellipoid. The cell processes become fine or retracted. The intensity of staining ofGFAP is reduced. Expression ofGFAP mRNA is down regulated. However, in the control experiment, no obvious effects on the morphology or synthesis ofGFAP on cultured normal and scratched astrocytes infected by primary retrovirus vector (PLXSN) have been observed. The supernatant of PLBskG has been injected into an injured site by microinjectionin vivo. The number and process lengths of GFAP positive cells are obviously reduced around the injured site. The formation of the glial scar is inhibited, showing that the recombinant antisenseGFAP retrovirus can effectively inhibit the growth andGFAP expression of normal and injured astrocytesin vitro and the formation of glial scarin vivo. It is suggested thatGFAP plays an important role in glial scar formation.  相似文献   

9.
Regulation of heat shock protein 70 gene expression by c-myc   总被引:4,自引:0,他引:4  
R E Kingston  A S Baldwin  P A Sharp 《Nature》1984,312(5991):280-282
  相似文献   

10.
Moreno E  Basler K  Morata G 《Nature》2002,416(6882):755-759
During the growth of Drosophila imaginal discs a process called 'cell competition' eliminates slow-proliferating but otherwise viable cells. We report here that cell competition requires the function of the brinker (brk) gene, whose expression is normally repressed by Decapentaplegic (Dpp) signalling but is upregulated in slow-growing Minute/+ cells. Excess brk expression activates the c-Jun amino-terminal kinase pathway, which in turn triggers apoptosis in these cells. We propose that slow-proliferating cells upregulate Brk levels owing to a disadvantage in competing for, or in transducing, the Dpp survival signal. This sequence of events might represent a general mechanism by which weaker cells are eliminated from a growing population, and might serve as a method of controlling cell number and optimizing tissue fitness and hence organ function.  相似文献   

11.
S J Gaunt  J R Miller  D J Powell  D Duboule 《Nature》1986,324(6098):662-664
Pattern formation in animal development requires that genes be expressed differentially according to position in the sheets of cells that make up the early embryo. The homoeobox-containing genes of Drosophila are control genes active both in the establishment of a segmentation pattern and in the specification of segment identity. In situ hybridization experiments confirm that these genes are expressed in a segmentally-restricted manner and that their expression presages morphological differentiation of segmental structures. Homoeobox genes have recently been isolated from the mouse and have been shown to be expressed during mouse development. Using in situ hybridization, we show here that expression of the mouse homoeobox gene Mo-10 (ref. 7) is spatially restricted in the developing embryo and that localization of expression is already evident within the germ layers before their morphological differentiation. These findings support the suggestion that the homoeobox genes of mammals, like those of Drosophila, may be important in pattern formation.  相似文献   

12.
“Bainong 3217 × Mardler” BC5F4 wheat line at the initial stage of inoculation with powdery mildew pathogen (Erysiphe graminis DC) was used to construct a suppression subtractive hybridization (SSH) cDNA library. Totally 760 ESTs were obtained through sequencing. Similarity analysis of ESTs based on BLASTn and BLASTx with the sequences in GenBank, in combination with macroarray differential screening, revealed that 199 ESTs of 65 kinds were known to be functionally disease resistance related. Based on the gene expression profiling in the present study, it is postulated that salicylic acid (SA) and MAP-related signal transduction pathways were involved in powdery mildew resistance in wheat. System acquired resistance genes were predominant in terms of kinds and quantity. With the initiation of cell defense reaction, the genes conferring anti-oxidation substances were largely expressed and thus cell protection mechanism was activated. Much evidence revealed that phenylpropanes metabolic pathway was involved in phytoalexin synthesis in wheat powdery mildew resistance. Genes conferring some enzymes of structural modification of cell walls and proteinase inhibitors inhibiting pathogen growth were also detected. The genes controlling a few proteinases (mainly cysteine proteinase) had a considerable redundancy of expression.  相似文献   

13.
Wolbachia is an obligatory, maternally inherited intracellular bacterium, known to infect a wide range of arthropods. It has been implicated in causing cytoplasmic incompatibility (CI), parthenogenesis, the feminization of genetic males and male-killing in different hosts. However, the molecular mechanisms by which this fastidious bacterium causes these reproductive abnormalities have not yet been determined. In this study, we report on the cloning and characterization of the gene encoding phage-related tail protein (PrTP) from Wolbachia in Drosophila melanogaster CantonS (wMelCS) and from Wolbachia in Drosophila melanogaster yw67c23 (wMel) by representational difference analysis (RDA) and ligation-mediated PCR (LM-PCR). The functionality of a bipartite nuclear localization signal sequence (NLS) of the gene was also successfully tested in Drosophila S2 cells. PrTP expression in various strains of Wolbachia was investigated. Our results suggest that PrTP may not induce CI directly. However, the existence of prtp provided direct evidence of phage-mediated horizontal gene transfer (HGT) that might play an important role in a variety of reproductive abnormalities of Wolbachia.  相似文献   

14.
Hir/Hira基因产物是组蛋白基因表达的一种负调节因子,其在果蝇发育过程中的作用还没有得到确认.本研究将果蝇Hira基因(dHira)的cDNA克隆到载体UAsP中,运用UAS—Gal4系统使其在果蝇早期胚胎中大量表达.结果发现在胚胎发育早期,无论是在头部还是在全胚胎过量表达Hira,都引起果蝇胚胎大量死亡,而且随着转基因拷贝数的增加,胚胎的死亡率也显著增加,说明Hira过量表达对果蝇胚胎发育产生严重影响.由于Hira基因产物与核小体的组装、染色质结构等的调节有关,因此推测Hira过量表达可能是通过对组蛋白的抑制对果蝇胚胎发育造成影响的.  相似文献   

15.
16.
The recognition and phagocytosis of microbes by macrophages is a principal aspect of innate immunity that is conserved from insects to humans. Drosophila melanogaster has circulating macrophages that phagocytose microbes similarly to mammalian macrophages, suggesting that insect macrophages can be used as a model to study cell-mediated innate immunity. We devised a double-stranded RNA interference-based screen in macrophage-like Drosophila S2 cells, and have defined 34 gene products involved in phagocytosis. These include proteins that participate in haemocyte development, vesicle transport, actin cytoskeleton regulation and a cell surface receptor. This receptor, Peptidoglycan recognition protein LC (PGRP-LC), is involved in phagocytosis of Gram-negative but not Gram-positive bacteria. Drosophila humoral immunity also distinguishes between Gram-negative and Gram-positive bacteria through the Imd and Toll pathways, respectively; however, a receptor for the Imd pathway has not been identified. Here we show that PGRP-LC is important for antibacterial peptide synthesis induced by Escherichia coli both in vitro and in vivo. Furthermore, totem mutants, which fail to express PGRP-LC, are susceptible to Gram-negative (E. coli), but not Gram-positive, bacterial infection. Our results demonstrate that PGRP-LC is an essential component for recognition and signalling of Gram-negative bacteria. Furthermore, this functional genomic approach is likely to have applications beyond phagocytosis.  相似文献   

17.
Control of neuronal fate by the Drosophila segmentation gene even-skipped   总被引:10,自引:0,他引:10  
C Q Doe  D Smouse  C S Goodman 《Nature》1988,333(6171):376-378
The central nervous system (CNS) contains a remarkable diversity of cell types. The molecular basis for generating this neuronal diversity is poorly understood. Much is known, however, about the regulatory genes which control segmentation and segment identity during early Drosophila embryogenesis. Interestingly, most of the segmentation and homoeotic genes in Drosophila, as well as many of their vertebrate homologues, are expressed during the development of the nervous system (for example, ref. 3). Are these genes involved in specifying the identity of individual neurons during neurogenesis, just as they specify the identity of cells during segmentation? We previously described the CNS expression of the segmentation gene fushi tarazu (ftz) and showed that ftz CNS expression is involved in the determination of an identified neuron. Here we show that another segmentation gene, even-skipped (eve), is expressed in a different but overlapping subset of neurons. Temperature-sensitive inactivation of the eve protein during neurogenesis alters the fate of two of these neurons. Our results indicate that the nuclear protein products of the eve and ftz segmentation genes are components of the mechanism controlling cell fate during neuronal development.  相似文献   

18.
A Zimmer  P Gruss 《Nature》1989,338(6211):150-153
Several mouse gene families related to Drosophila developmental control genes and containing a homoeobox, a paired box or a finger domain, have been cloned and structurally analysed. On the basis of structural similarities to the Drosophila genes and of their spatially and temporally restricted expression patterns during mouse embryogenesis, it has been proposed that these mammalian genes also are involved in the control of development. To elucidate the function of homoeobox genes by genetic means, mouse mutants must be generated. We have developed a technique for mutagenesis in vivo and have used it to mutate the homoeobox Hox 1.1 gene. In vivo mutagenesis was achieved through homologous recombination between an endogenous Hox 1.1 allele and a microinjected mutated gene in pluripotent embryonic stem (ES) cells. Mutant cells were identified by means of the polymerase chain reaction (PCR) and mutant clones were used to generate chimaeric mice. Because the homologous recombination event is formally a gene conversion event and no selection is required to screen for cells carrying the mutated allele, in vivo mutagenesis allows specific alterations in the target sequence to be made without the introduction of any other sequences.  相似文献   

19.
Payre F  Vincent A  Carreno S 《Nature》1999,400(6741):271-275
  相似文献   

20.
将黑腹果蝇(Drosophila melanogaster)抗真菌肽基因Drosomycin(Drs)克隆到pPICZα-A载体中,构建分泌型表达载体pPICZα-A-Drs,转化宿主菌Pichia pastoris X-33.在 AOX1(醇氧化酶)启动子调控下,抗真菌肽DRS成功表达,其分子量约为5 kD.抑菌试验显示,DRS对供试真菌有明显的抑菌活性.采用考马斯亮蓝法测定抗真菌肽的具体表达量,并优化了诱导条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号