首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A recent and prevalent mutation in the chemokine receptor CCR5 in humans of northern European ancestry has been proposed to provide protection against bubonic plague. Here we infect both normal and CCR5-deficient mice with the bacterium Yersinia pestis, the cause of the plague epidemics that wiped out one-third of Europeans in the Middle Ages, and find no difference in either bacterial growth or survival time between the two groups. Unless the pathogenesis of Yersinia infection differs markedly between mice and humans, our results indicate that CCR5 deficiency in people is unlikely to protect against plague.  相似文献   

2.
R Rosqvist  M Skurnik  H Wolf-Watz 《Nature》1988,334(6182):522-524
A chromosomally encoded protein, which mediates invasion into HeLa cells was recently identified in Yersinia pseudotuberculosis. The role of this protein (invasin) in the virulence process was not, however, investigated. We show that mutation of the invasin gene in Y. pseudotuberculosis abolishes the ability of the bacteria to invade HeLa cells. When mice were challenged by intraperitoneal injection both the mutant and the wild-type strain produced infections of similar virulence but mutant showed a slower rate of infection after oral challenge. A double mutant, carrying an additional mutation in the gene coding for the Yop1 protein, was also constructed. The double mutant was significantly more virulent than either the wild-type or the corresponding single mutants. Y. pestis, in contrast to Y. pseudotuberculosis lacks the ability to express either invasin or Yop1, sequence analysis of the yopA gene from both Y. pestis and Y. pseudotuberculosis shows that the yopA gene of Y. pestis contains a point-mutation leading to a reading-frame shift. When the yopA+ gene was introduced into Y. pestis the virulence of this strain was reduced. These results may provide insight into the rise and fall of plague epidemics caused by Y. pestis.  相似文献   

3.
Genome sequence of Yersinia pestis, the causative agent of plague   总被引:59,自引:0,他引:59  
The Gram-negative bacterium Yersinia pestis is the causative agent of the systemic invasive infectious disease classically referred to as plague, and has been responsible for three human pandemics: the Justinian plague (sixth to eighth centuries), the Black Death (fourteenth to nineteenth centuries) and modern plague (nineteenth century to the present day). The recent identification of strains resistant to multiple drugs and the potential use of Y. pestis as an agent of biological warfare mean that plague still poses a threat to human health. Here we report the complete genome sequence of Y. pestis strain CO92, consisting of a 4.65-megabase (Mb) chromosome and three plasmids of 96.2 kilobases (kb), 70.3 kb and 9.6 kb. The genome is unusually rich in insertion sequences and displays anomalies in GC base-composition bias, indicating frequent intragenomic recombination. Many genes seem to have been acquired from other bacteria and viruses (including adhesins, secretion systems and insecticidal toxins). The genome contains around 150 pseudogenes, many of which are remnants of a redundant enteropathogenic lifestyle. The evidence of ongoing genome fluidity, expansion and decay suggests Y. pestis is a pathogen that has undergone large-scale genetic flux and provides a unique insight into the ways in which new and highly virulent pathogens evolve.  相似文献   

4.
Darby C  Hsu JW  Ghori N  Falkow S 《Nature》2002,417(6886):243-244
Bubonic plague is transmitted to mammals, including humans, by the bites of fleas whose digestive tracts are blocked by a mass of the bacterium Yersinia pestis. In these fleas, the plague-causing bacteria are surrounded by an extracellular matrix of unknown composition, and the blockage depends on a group of bacterial genes known as the hmsHFRS operon. Here we show that Y. pestis creates an hmsHFRS-dependent extracellular biofilm to inhibit feeding by the nematode Caenorhabditis elegans. Our results suggest that feeding obstruction in fleas is a biofilm-mediated process and that biofilms may be a bacterial defence against predation by invertebrates.  相似文献   

5.
目的观察在鼠疫F1单克隆抗体制备过程中,BALB/c小鼠的选择和饲养与所获腹水量和抗体效价的关系,为大量制备该单克隆抗体提供实验室参考依据。方法根据小鼠周龄、性别和饲养条件对BALB/c小鼠进行分组,并采用动物体内诱生法制备腹水,间接ELISA用来检测腹水中F1单克隆抗体效价。结果12~16周龄组、雄性和加强营养组小鼠所获腹水产量和效价均高于其它周龄组和对照组。结论选择适当周龄的雄性小鼠、饲养过程中加强营养和管理可适当提高腹水产量和抗体的效价。  相似文献   

6.
Chin AI  Dempsey PW  Bruhn K  Miller JF  Xu Y  Cheng G 《Nature》2002,416(6877):190-194
Host defences to microorganisms rely on a coordinated interplay between the innate and adaptive responses of immunity. Infection with intracellular bacteria triggers an immediate innate response requiring macrophages, neutrophils and natural killer cells, whereas subsequent activation of an adaptive response through development of T-helper subtype 1 cells (TH1) proceeds during persistent infection. To understand the physiological role of receptor-interacting protein 2 (Rip2), also known as RICK and CARDIAK, we generated mice with a targeted disruption of the gene coding for Rip2. Here we show that Rip2-deficient mice exhibit a profoundly decreased ability to defend against infection by the intracellular pathogen Listeria monocytogenes. Rip2-deficient macrophages infected with L. monocytogenes or treated with lipopolysaccharide (LPS) have decreased activation of NF-kappaB, whereas dominant negative Rip2 inhibited NF-kappaB activation mediated by Toll-like receptor 4 and Nod1. In vivo, Rip2-deficient mice were resistant to the lethal effects of LPS-induced endotoxic shock. Furthermore, Rip2 deficiency results in impaired interferon-gamma production in both TH1 and natural killer cells, attributed in part to defective interleukin-12-induced Stat4 activation. Our data reflect requirements for Rip2 in multiple pathways regulating immune and inflammatory responses.  相似文献   

7.
Limited genetic information is available concerning the polymorphisms of HIV-1 resistant genes in indigenous Chinese populations. The aim of this study is to identify the allelic frequencies of the chemokine and chemokine receptor genes in the Chinese mainland. Genomic DNA samples extracted from whole blood of 2318 subjects were analyzed by using PCR or PCR/restriction fragment length polymorphism (RFLP) assays, and further confirmed by direct DNA sequencing. Higher frequencies of mutant CCR2-64I (19.15%—28.79%) and SDF1-3’A (19.10%—29.86%) alleles were found in subjects of 8 ethnic groups in the Chinese mainland. In contrast, the △32 mutation in CCR5 gene occurs at a very low frequency (0.0016, n=1287) in Han population. A relatively high frequency of CCR5- wt/D32 heterozygotes was observed in Uygurian and Mongolian populations. No △32 mutation allele was detected in Tibetan and other 4 ethnic groups in Yunnan Province. There was no CCR5-m303 mutation in subjects of any ethnic group in the Chinese mainland. Our results suggest that the CCR5-△32 mutation is not a major resistant factor against HIV-1 infection and disease progression in Han, Tibetan and other ethnic groups in Yunnan Province. Whether higher frequencies of CCR2-64I and SDF1-3′A alleles constitute major genetic resistant factors or not remains to be clarified.  相似文献   

8.
Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348-1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347-1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections.  相似文献   

9.
The function and usage of vMIPa encoded by K6 gene of herpesvirus 8 (HHV8) which has homology with human macrophage protein (MIP) have not been clearly known. In the present note the K6 gene of HHV8 was cloned and transfected into NIH3T3 cells and E. coli cells. Conditional media from the 3T3-transfected cells and K6 product vMIPa from E. coli . Cells were used to perform the experiments of ligand-receptor binding and cellular adhesion with peripheral blood macrophages. The conditional media and the purified vMIPa from E. coli could compete to bind to CCR5 located on macrophages from peripheral blood with I125-hMIP-1a chemokine of human. Cellular adhesion showed that the conditional media from transfected cells and the purified vMIPa did not induce the adhesion of macrophages from peripheral blood to ICAM-1. In conclusion, vMIPa encoded by K6 gene of HHV8 can bind to CCR5 of peripheral blood macrophage cells and does not induce their adhesion. This suggests that vMIPa enclosed CCR5, also known as HIV co-receptor, may be used to prevent and treat HIV infection.  相似文献   

10.
All humans become infected with multiple herpesviruses during childhood. After clearance of acute infection, herpesviruses enter a dormant state known as latency. Latency persists for the life of the host and is presumed to be parasitic, as it leaves the individual at risk for subsequent viral reactivation and disease. Here we show that herpesvirus latency also confers a surprising benefit to the host. Mice latently infected with either murine gammaherpesvirus 68 or murine cytomegalovirus, which are genetically highly similar to the human pathogens Epstein-Barr virus and human cytomegalovirus, respectively, are resistant to infection with the bacterial pathogens Listeria monocytogenes and Yersinia pestis. Latency-induced protection is not antigen specific but involves prolonged production of the antiviral cytokine interferon-gamma and systemic activation of macrophages. Latency thereby upregulates the basal activation state of innate immunity against subsequent infections. We speculate that herpesvirus latency may also sculpt the immune response to self and environmental antigens through establishment of a polarized cytokine environment. Thus, whereas the immune evasion capabilities and lifelong persistence of herpesviruses are commonly viewed as solely pathogenic, our data suggest that latency is a symbiotic relationship with immune benefits for the host.  相似文献   

11.
12.
Keeling MJ  Gilligan CA 《Nature》2000,407(6806):903-906
Bubonic plague is widely regarded as a disease of mainly historical importance; however, with increasing reports of incidence and the discovery of antibiotic-resistant strains of the plague bacterium Yersinia pestis, it is re-emerging as a significant health concerns. Here we bypass the conventional human-disease models, and propose that bubonic plague is driven by the dynamics of the disease in the rat population. Using a stochastic, spatial metapopulation model, we show that bubonic plague can persist in relatively small rodent populations from which occasional human epidemics arise, without the need for external imports. This explains why historically the plague persisted despite long disease-free periods, and how the disease re-occurred in cities with tight quarantine control. In a contemporary setting, we show that human vaccination cannot eradicate the plague, and that culling of rats may prevent or exacerbate human epidemics, depending on the timing of the cull. The existence of plague reservoirs in wild rodent populations has important public-health implications for the transmission to urban rats and the subsequent risk of human outbreaks.  相似文献   

13.
我国鼠疫研究概况   总被引:1,自引:0,他引:1  
主要从鼠疫的发生与鼠疫耶尔森菌的发现、区域分布、易感宿主与控制等方面对我国鼠疫研究进行了综述。  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) continues to spread, principally by heterosexual sex, but no vaccine is available. Hence, alternative prevention methods are needed to supplement educational and behavioural-modification programmes. One such approach is a vaginal microbicide: the application of inhibitory compounds before intercourse. Here, we have evaluated the microbicide concept using the rhesus macaque 'high dose' vaginal transmission model with a CCR5-receptor-using simian-human immunodeficiency virus (SHIV-162P3) and three compounds that inhibit different stages of the virus-cell attachment and entry process. These compounds are BMS-378806, a small molecule that binds the viral gp120 glycoprotein and prevents its attachment to the CD4 and CCR5 receptors, CMPD167, a small molecule that binds to CCR5 to inhibit gp120 association, and C52L, a bacterially expressed peptide inhibitor of gp41-mediated fusion. In vitro, all three compounds inhibit infection of T cells and cervical tissue explants, and C52L acts synergistically with CMPD167 or BMS-378806 to inhibit infection of cell lines. In vivo, significant protection was achieved using each compound alone and in combinations. CMPD167 and BMS-378806 were protective even when applied 6 h before challenge.  相似文献   

15.
Human CCL17/TARC (hCCL17) and CCL22/MDC (hCCL22) interact with their receptor CCR4, playing pivotal roles in various Th2 cell-dominant diseases. Rat Ccl17, Ccl22 and Ccr4 share 63.4%, 65.2% and 87.5% homology at the amino acid level, respectively, compared with their human homologues. Rat Ccl22 has been demonstrated to interact with rat Ccr4. However, it is not known whether rat Ccl17 is a functional ligand for rat Ccr4 and whether rat Ccr4 can interact with hCCL17 and hCCL22. In this study, we cloned rat C...  相似文献   

16.
Adipocyte fatty-acid-binding protein, aP2 (FABP4) is expressed in adipocytes and macrophages, and integrates inflammatory and metabolic responses. Studies in aP2-deficient mice have shown that this lipid chaperone has a significant role in several aspects of metabolic syndrome, including type 2 diabetes and atherosclerosis. Here we demonstrate that an orally active small-molecule inhibitor of aP2 is an effective therapeutic agent against severe atherosclerosis and type 2 diabetes in mouse models. In macrophage and adipocyte cell lines with or without aP2, we also show the target specificity of this chemical intervention and its mechanisms of action on metabolic and inflammatory pathways. Our findings demonstrate that targeting aP2 with small-molecule inhibitors is possible and can lead to a new class of powerful therapeutic agents to prevent and treat metabolic diseases such as type 2 diabetes and atherosclerosis.  相似文献   

17.
Mueller AK  Labaied M  Kappe SH  Matuschewski K 《Nature》2005,433(7022):164-167
Malaria is a mosquito-borne disease that is transmitted by inoculation of the Plasmodium parasite sporozoite stage. Sporozoites invade hepatocytes, transform into liver stages, and subsequent liver-stage development ultimately results in release of pathogenic merozoites. Liver stages of the parasite are a prime target for malaria vaccines because they can be completely eliminated by sterilizing immune responses, thereby preventing malarial infection. Using expression profiling, we previously identified genes that are only expressed in the pre-erythrocytic stages of the parasite. Here, we show by reverse genetics that one identified gene, UIS3 (upregulated in infective sporozoites gene 3), is essential for early liver-stage development. uis3-deficient sporozoites infect hepatocytes but are unable to establish blood-stage infections in vivo, and thus do not lead to disease. Immunization with uis3-deficient sporozoites confers complete protection against infectious sporozoite challenge in a rodent malaria model. This protection is sustained and stage specific. Our findings demonstrate that a safe and effective, genetically attenuated whole-organism malaria vaccine is possible.  相似文献   

18.
为明确痤疮丙酸杆菌(PA)对具有抗胸膜肺炎放线杆菌(APP)血清7型和血清9型的异源免疫保护作用,对小鼠免疫PA分离株S14后,分别用APP血清7型(CCVC-265)和血清9型(CCVC-267)攻毒。结果表明,免疫保护率达60%和70%;而用猪抗PA血清免疫小鼠后以APP血清7型和血清9型攻毒,免疫保护率达100%。血清特异性抗体效价检测显示,PA免疫小鼠后,可诱导小鼠产生特异性的抗APP血清7型和9型的抗体,ELISA方法检测特异性抗体平均效价为1 800和2 800。PA对APP血清7型和9型的感染具有良好的保护作用。  相似文献   

19.
The human gut is colonized with a wide variety of microorganisms, including species, such as those belonging to the bacterial genus Bifidobacterium, that have beneficial effects on human physiology and pathology. Among the most distinctive benefits of bifidobacteria are modulation of host defence responses and protection against infectious diseases. Nevertheless, the molecular mechanisms underlying these effects have barely been elucidated. To investigate these mechanisms, we used mice associated with certain bifidobacterial strains and a simplified model of lethal infection with enterohaemorrhagic Escherichia coli O157:H7, together with an integrated 'omics' approach. Here we show that genes encoding an ATP-binding-cassette-type carbohydrate transporter present in certain bifidobacteria contribute to protecting mice against death induced by E. coli O157:H7. We found that this effect can be attributed, at least in part, to increased production of acetate and that translocation of the E. coli O157:H7 Shiga toxin from the gut lumen to the blood was inhibited. We propose that acetate produced by protective bifidobacteria improves intestinal defence mediated by epithelial cells and thereby protects the host against lethal infection.  相似文献   

20.
A Toll-like receptor recognizes bacterial DNA   总被引:225,自引:0,他引:225  
DNA from bacteria has stimulatory effects on mammalian immune cells, which depend on the presence of unmethylated CpG dinucleotides in the bacterial DNA. In contrast, mammalian DNA has a low frequency of CpG dinucleotides, and these are mostly methylated; therefore, mammalian DNA does not have immuno-stimulatory activity. CpG DNA induces a strong T-helper-1-like inflammatory response. Accumulating evidence has revealed the therapeutic potential of CpG DNA as adjuvants for vaccination strategies for cancer, allergy and infectious diseases. Despite its promising clinical use, the molecular mechanism by which CpG DNA activates immune cells remains unclear. Here we show that cellular response to CpG DNA is mediated by a Toll-like receptor, TLR9. TLR9-deficient (TLR9-/-) mice did not show any response to CpG DNA, including proliferation of splenocytes, inflammatory cytokine production from macrophages and maturation of dendritic cells. TLR9-/- mice showed resistance to the lethal effect of CpG DNA without any elevation of serum pro-inflammatory cytokine levels. The in vivo CpG-DNA-mediated T-helper type-1 response was also abolished in TLR9-/- mice. Thus, vertebrate immune systems appear to have evolved a specific Toll-like receptor that distinguishes bacterial DNA from self-DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号