首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian olfactory system detects and discriminates thousands of odorants using many different receptors expressed by sensory neurons in the nasal epithelium. Axonal projections from these neurons to the main olfactory bulbs form reproducible patterns of glomeruli in two widely separated regions of each bulb, creating two mirror-symmetric maps of odorant receptor projections. To investigate whether odorant receptors organize neural circuitry in the olfactory bulb, we have examined a genetically modified mouse line, rI7 --> M71, in which a functionally characterized receptor, rI7, has been substituted into the M71 receptor locus. Here we show that despite their ectopic location the resulting glomeruli are responsive to known ligands of the rI7 receptor, attract postsynaptic innervation by mitral/tufted cell dendrites, and endow these cells with responses that are characteristic of the rI7 receptor. External tufted cells receiving input from rI7 --> M71 glomeruli form precise intrabulbar projections that link medial and lateral rI7 --> M71 glomeruli anatomically, thus providing a substrate for coordinating isofunctional glomeruli. We conclude that odorant receptor identity in epithelial neurons determines not only glomerular convergence and function, but also functional circuitry in the olfactory bulb.  相似文献   

2.
Olfaction: mosquito receptor for human-sweat odorant   总被引:1,自引:0,他引:1  
Hallem EA  Nicole Fox A  Zwiebel LJ  Carlson JR 《Nature》2004,427(6971):212-213
Female Anopheles mosquitoes, the world's most important vector of Plasmodium falciparum malaria, locate their human hosts primarily through olfactory cues, but the molecular mechanisms that underlie this recognition are a mystery. Here we show that the Anopheles gambiae protein AgOr1, a female-specific member of a family of putative odorant receptors, responds to a component of human sweat. Compounds designed to activate or block receptors of this type could function as attractants for trapping mosquitoes or as insect repellents in helping to control Anopheles and other insect pests.  相似文献   

3.
Benton R  Vannice KS  Vosshall LB 《Nature》2007,450(7167):289-293
The CD36 family of transmembrane receptors is present across metazoans and has been implicated biochemically in lipid binding and transport. Several CD36 proteins function in the immune system as scavenger receptors for bacterial pathogens and seem to act as cofactors for Toll-like receptors by facilitating recognition of bacterially derived lipids. Here we show that a Drosophila melanogaster CD36 homologue, Sensory neuron membrane protein (SNMP), is expressed in a population of olfactory sensory neurons (OSNs) implicated in pheromone detection. SNMP is essential for the electrophysiological responses of OSNs expressing the receptor OR67d to (Z)-11-octadecenyl acetate (cis-vaccenyl acetate, cVA), a volatile male-specific fatty-acid-derived pheromone that regulates sexual and social aggregation behaviours. SNMP is also required for the activation of the moth pheromone receptor HR13 by its lipid-derived pheromone ligand (Z)-11-hexadecenal, but is dispensable for the responses of the conventional odorant receptor OR22a to its short hydrocarbon fruit ester ligands. Finally, we show that SNMP is required for responses of OR67d to cVA when ectopically expressed in OSNs not normally activated by pheromones. Because mammalian CD36 binds fatty acids, we suggest that SNMP acts in concert with odorant receptors to capture pheromone molecules on the surface of olfactory dendrites. Our work identifies an unanticipated cofactor for odorant receptors that is likely to have a widespread role in insect pheromone detection. Moreover, these results define a unifying model for CD36 function, coupling recognition of lipid-based extracellular ligands to signalling receptors in both pheromonal communication and pathogen recognition through the innate immune system.  相似文献   

4.
From worm to man, many odorant signals are perceived by the binding of volatile ligands to odorant receptors that belong to the G-protein-coupled receptor (GPCR) family. They couple to heterotrimeric G-proteins, most of which induce cAMP production. This second messenger then activates cyclic-nucleotide-gated ion channels to depolarize the olfactory receptor neuron, thus providing a signal for further neuronal processing. Recent findings, however, have challenged this concept of odorant signal transduction in insects, because their odorant receptors, which lack any sequence similarity to other GPCRs, are composed of conventional odorant receptors (for example, Or22a), dimerized with a ubiquitously expressed chaperone protein, such as Or83b in Drosophila. Or83b has a structure akin to GPCRs, but has an inverted orientation in the plasma membrane. However, G proteins are expressed in insect olfactory receptor neurons, and olfactory perception is modified by mutations affecting the cAMP transduction pathway. Here we show that application of odorants to mammalian cells co-expressing Or22a and Or83b results in non-selective cation currents activated by means of an ionotropic and a metabotropic pathway, and a subsequent increase in the intracellular Ca(2+) concentration. Expression of Or83b alone leads to functional ion channels not directly responding to odorants, but being directly activated by intracellular cAMP or cGMP. Insect odorant receptors thus form ligand-gated channels as well as complexes of odorant-sensing units and cyclic-nucleotide-activated non-selective cation channels. Thereby, they provide rapid and transient as well as sensitive and prolonged odorant signalling.  相似文献   

5.
The heterotrimeric G-protein Gs couples cell-surface receptors to the activation of adenylyl cyclases and cyclic AMP production (reviewed in refs 1, 2). RGS proteins, which act as GTPase-activating proteins (GAPs) for the G-protein alpha-subunits alpha(i) and alpha(q), lack such activity for alpha(s) (refs 3-6). But several RGS proteins inhibit cAMP production by Gs-linked receptors. Here we report that RGS2 reduces cAMP production by odorant-stimulated olfactory epithelium membranes, in which the alpha(s) family member alpha(olf) links odorant receptors to adenylyl cyclase activation. Unexpectedly, RGS2 reduces odorant-elicited cAMP production, not by acting on alpha(olf) but by inhibiting the activity of adenylyl cyclase type III, the predominant adenylyl cyclase isoform in olfactory neurons. Furthermore, whole-cell voltage clamp recordings of odorant-stimulated olfactory neurons indicate that endogenous RGS2 negatively regulates odorant-evoked intracellular signalling. These results reveal a mechanism for controlling the activities of adenylyl cyclases, which probably contributes to the ability of olfactory neurons to discriminate odours.  相似文献   

6.
1 Introduction Chiral recognition of substrates is one of the most characteristic phenomena of biological activity. And one of the most fundamental biological activities of chemical substances is their smell. In 1991, Linda Buck and Richard Axel~([1]) discovered a large multigene family that en codes odorant receptors, for which they were awarded the 2004 Nobel Prize in Medicine and Physiology. These odorant receptors are highly homologous, consist of ca. 320 amino acids, and show a heptah…  相似文献   

7.
The mammalian olfactory system mediates various responses, including aversive behaviours to spoiled foods and fear responses to predator odours. In the olfactory bulb, each glomerulus represents a single species of odorant receptor. Because a single odorant can interact with several different receptor species, the odour information received in the olfactory epithelium is converted to a topographical map of multiple glomeruli activated in distinct areas in the olfactory bulb. To study how the odour map is interpreted in the brain, we generated mutant mice in which olfactory sensory neurons in a specific area of the olfactory epithelium are ablated by targeted expression of the diphtheria toxin gene. Here we show that, in dorsal-zone-depleted mice, the dorsal domain of the olfactory bulb was devoid of glomerular structures, although second-order neurons were present in the vacant areas. The mutant mice lacked innate responses to aversive odorants, even though they were capable of detecting them and could be conditioned for aversion with the remaining glomeruli. These results indicate that, in mice, aversive information is received in the olfactory bulb by separate sets of glomeruli, those dedicated for innate and those for learned responses.  相似文献   

8.
Genetic tracing reveals a stereotyped sensory map in the olfactory cortex.   总被引:16,自引:0,他引:16  
Z Zou  L F Horowitz  J P Montmayeur  S Snapper  L B Buck 《Nature》2001,414(6860):173-179
The olfactory system translates myriad chemical structures into diverse odour perceptions. To gain insight into how this is accomplished, we prepared mice that coexpressed a transneuronal tracer with only one of about 1,000 different odorant receptors. The tracer travelled from nasal neurons expressing that receptor to the olfactory bulb and then to the olfactory cortex, allowing visualization of cortical neurons that receive input from a particular odorant receptor. These studies revealed a stereotyped sensory map in the olfactory cortex in which signals from a particular receptor are targeted to specific clusters of neurons. Inputs from different receptors overlap spatially and could be combined in single neurons, potentially allowing for an integration of the components of an odorant's combinatorial receptor code. Signals from the same receptor are targeted to multiple olfactory cortical areas, permitting the parallel, and perhaps differential, processing of inputs from a single receptor before delivery to the neocortex and limbic system.  相似文献   

9.
The mammalian vomeronasal organ (VNO), a part of the olfactory system, detects pheromones--chemical signals that modulate social and reproductive behaviours. But the molecular receptors in the VNO that detect these chemosensory stimuli remain undefined. Candidate pheromone receptors are encoded by two distinct and complex superfamilies of genes, V1r and V2r (refs 3 and 4), which code for receptors with seven transmembrane domains. These genes are selectively expressed in sensory neurons of the VNO. However, there is at present no functional evidence for a role of these genes in pheromone responses. Here, using chromosome engineering technology, we delete in the germ line of mice an approximately 600-kilobase genomic region that contains a cluster of 16 intact V1r genes. These genes comprise two of the 12 described V1r gene families, and represent approximately 12% of the V1r repertoire. The mutant mice display deficits in a subset of VNO-dependent behaviours: the expression of male sexual behaviour and maternal aggression is substantially altered. Electrophysiologically, the epithelium of the VNO of such mice does not respond detectably to specific pheromonal ligands. The behavioural impairment and chemosensory deficit support a role of V1r receptors as pheromone receptors.  相似文献   

10.
Mice use pheromones, compounds emitted and detected by members of the same species, as cues to regulate social behaviours such as pup suckling, aggression and mating. Neurons that detect pheromones are thought to reside in at least two separate organs within the nasal cavity: the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). Each pheromone ligand is thought to activate a dedicated subset of these sensory neurons. However, the nature of the pheromone cues and the identity of the responding neurons that regulate specific social behaviours are largely unknown. Here we show, by direct activation of sensory neurons and analysis of behaviour, that at least two chemically distinct ligands are sufficient to promote male-male aggression and stimulate VNO neurons. We have purified and analysed one of these classes of ligand and found its specific aggression-promoting activity to be dependent on the presence of the protein component of the major urinary protein (MUP) complex, which is known to comprise specialized lipocalin proteins bound to small organic molecules. Using calcium imaging of dissociated vomeronasal neurons (VNs), we have determined that the MUP protein activates a sensory neuron subfamily characterized by the expression of the G-protein Galpha(o) subunit (also known as Gnao) and Vmn2r putative pheromone receptors (V2Rs). Genomic analysis indicates species-specific co-expansions of MUPs and V2Rs, as would be expected among pheromone-signalling components. Finally, we show that the aggressive behaviour induced by the MUPs occurs exclusively through VNO neuronal circuits. Our results substantiate the idea of MUP proteins as pheromone ligands that mediate male-male aggression through the accessory olfactory neural pathway.  相似文献   

11.
Eggan K  Baldwin K  Tackett M  Osborne J  Gogos J  Chess A  Axel R  Jaenisch R 《Nature》2004,428(6978):44-49
Cloning by nuclear transplantation has been successfully carried out in various mammals, including mice. Until now mice have not been cloned from post-mitotic cells such as neurons. Here, we have generated fertile mouse clones derived by transferring the nuclei of post-mitotic, olfactory sensory neurons into oocytes. These results indicate that the genome of a post-mitotic, terminally differentiated neuron can re-enter the cell cycle and be reprogrammed to a state of totipotency after nuclear transfer. Moreover, the pattern of odorant receptor gene expression and the organization of odorant receptor genes in cloned mice was indistinguishable from wild-type animals, indicating that irreversible changes to the DNA of olfactory neurons do not accompany receptor gene choice.  相似文献   

12.
Bargmann CI 《Nature》2006,444(7117):295-301
Odour perception is initiated by specific interactions between odorants and a large repertoire of receptors in olfactory neurons. During the past few years, considerable progress has been made in tracing olfactory perception from the odorant receptor protein to the activity of olfactory neurons to higher processing centres and, ultimately, to behaviour. The most complete picture is emerging for the simplest olfactory system studied--that of the fruitfly Drosophila melanogaster. Comparison of rodent, insect and nematode olfaction reveals surprising differences and unexpected similarities among chemosensory systems.  相似文献   

13.
Insect olfactory receptors are heteromeric ligand-gated ion channels   总被引:7,自引:0,他引:7  
Sato K  Pellegrino M  Nakagawa T  Nakagawa T  Vosshall LB  Touhara K 《Nature》2008,452(7190):1002-1006
In insects, each olfactory sensory neuron expresses between one and three ligand-binding members of the olfactory receptor (OR) gene family, along with the highly conserved and broadly expressed Or83b co-receptor. The functional insect OR consists of a heteromeric complex of unknown stoichiometry but comprising at least one variable odorant-binding subunit and one constant Or83b family subunit. Insect ORs lack homology to G-protein-coupled chemosensory receptors in vertebrates and possess a distinct seven-transmembrane topology with the amino terminus located intracellularly. Here we provide evidence that heteromeric insect ORs comprise a new class of ligand-activated non-selective cation channels. Heterologous cells expressing silkmoth, fruitfly or mosquito heteromeric OR complexes showed extracellular Ca2+ influx and cation-non-selective ion conductance on stimulation with odorant. Odour-evoked OR currents are independent of known G-protein-coupled second messenger pathways. The fast response kinetics and OR-subunit-dependent K+ ion selectivity of the insect OR complex support the hypothesis that the complex between OR and Or83b itself confers channel activity. Direct evidence for odorant-gated channels was obtained by outside-out patch-clamp recording of Xenopus oocyte and HEK293T cell membranes expressing insect OR complexes. The ligand-gated ion channel formed by an insect OR complex seems to be the basis for a unique strategy that insects have acquired to respond to the olfactory environment.  相似文献   

14.
Cortical representations of olfactory input by trans-synaptic tracing   总被引:1,自引:0,他引:1  
In the mouse, each class of olfactory receptor neurons expressing a given odorant receptor has convergent axonal projections to two specific glomeruli in the olfactory bulb, thereby creating an odour map. However, it is unclear how this map is represented in the olfactory cortex. Here we combine rabies-virus-dependent retrograde mono-trans-synaptic labelling with genetics to control the location, number and type of 'starter' cortical neurons, from which we trace their presynaptic neurons. We find that individual cortical neurons receive input from multiple mitral cells representing broadly distributed glomeruli. Different cortical areas represent the olfactory bulb input differently. For example, the cortical amygdala preferentially receives dorsal olfactory bulb input, whereas the piriform cortex samples the whole olfactory bulb without obvious bias. These differences probably reflect different functions of these cortical areas in mediating innate odour preference or associative memory. The trans-synaptic labelling method described here should be widely applicable to mapping connections throughout the mouse nervous system.  相似文献   

15.
Odorant-sensitive adenylate cyclase may mediate olfactory reception   总被引:8,自引:0,他引:8  
U Pace  E Hanski  Y Salomon  D Lancet 《Nature》1985,316(6025):255-258
The mechanism of the sense of smell has long been a subject for theory and speculation. More recently, the notion of odorant recognition by stereospecific protein receptors has gained wide acceptance, but the receptor molecules remained elusive. The recognition molecules are believed to be quite diverse, which would partly explain the unusual difficulties encountered in their isolation by conventional ligand-binding techniques. An alternative approach would be to probe the receptors through transductory components that may be common to all receptor types. Here we report the identification of one such transductory molecular component. This is an odorant-sensitive adenylate cyclase, present in very large concentrations in isolated dendritic membranes of olfactory sensory neurones. Odorant activation of the enzyme is ligand and tissue specific, and occurs only in the presence of GTP, suggesting the involvement of receptor(s) coupled to a guanine nucleotide binding protein (G-protein). The olfactory G-protein is independently identified by labelling with bacterial toxins, and found to be similar to stimulatory G-proteins in other systems. Our results suggest a role for cyclic nucleotides in olfactory transduction, and point to a molecular analogy between olfaction and visual, hormone and neurotransmitter reception. Most importantly, the present findings reveal new ways to identify and isolate olfactory receptor proteins.  相似文献   

16.
Blood-feeding insects such as mosquitoes are efficient vectors of human infectious diseases because they are strongly attracted by body heat, carbon dioxide and odours produced by their vertebrate hosts. Insect repellents containing DEET (N,N-diethyl-meta-toluamide) are highly effective, but the mechanism by which this chemical wards off biting insects remains controversial despite decades of investigation. DEET seems to act both at close range as a contact chemorepellent, by affecting insect gustatory receptors, and at long range, by affecting the olfactory system. Two opposing mechanisms for the observed behavioural effects of DEET in the gas phase have been proposed: that DEET interferes with the olfactory system to block host odour recognition and that DEET actively repels insects by activating olfactory neurons that elicit avoidance behaviour. Here we show that DEET functions as a modulator of the odour-gated ion channel formed by the insect odorant receptor complex. The functional insect odorant receptor complex consists of a common co-receptor, ORCO (ref. 15) (formerly called OR83B; ref. 16), and one or more variable odorant receptor subunits that confer odour selectivity. DEET acts on this complex to potentiate or inhibit odour-evoked activity or to inhibit odour-evoked suppression of spontaneous activity. This modulation depends on the specific odorant receptor and the concentration and identity of the odour ligand. We identify a single amino-acid polymorphism in the second transmembrane domain of receptor OR59B in a Drosophila melanogaster strain from Brazil that renders OR59B insensitive to inhibition by the odour ligand and modulation by DEET. Our data indicate that natural variation can modify the sensitivity of an odour-specific insect odorant receptor to odour ligands and DEET. Furthermore, they support the hypothesis that DEET acts as a molecular 'confusant' that scrambles the insect odour code, and provide a compelling explanation for the broad-spectrum efficacy of DEET against multiple insect species.  相似文献   

17.
Olsen SR  Wilson RI 《Nature》2008,452(7190):956-960
Olfactory signals are transduced by a large family of odorant receptor proteins, each of which corresponds to a unique glomerulus in the first olfactory relay of the brain. Crosstalk between glomeruli has been proposed to be important in olfactory processing, but it is not clear how these interactions shape the odour responses of second-order neurons. In the Drosophila antennal lobe (a region analogous to the vertebrate olfactory bulb), we selectively removed most interglomerular input to genetically identified second-order olfactory neurons. Here we show that this broadens the odour tuning of these neurons, implying that interglomerular inhibition dominates over interglomerular excitation. The strength of this inhibitory signal scales with total feedforward input to the entire antennal lobe, and has similar tuning in different glomeruli. A substantial portion of this interglomerular inhibition acts at a presynaptic locus, and our results imply that this is mediated by both ionotropic and metabotropic receptors on the same nerve terminal.  相似文献   

18.
Zheng J  Umikawa M  Cui C  Li J  Chen X  Zhang C  Huynh H  Hyunh H  Kang X  Silvany R  Wan X  Ye J  Cantó AP  Chen SH  Wang HY  Ward ES  Zhang CC 《Nature》2012,485(7400):656-660
How environmental cues regulate adult stem cell and cancer cell activity through surface receptors is poorly understood. Angiopoietin-like proteins (ANGPTLs), a family of seven secreted glycoproteins, are known to support the activity of haematopoietic stem cells (HSCs) in vitro and in vivo. ANGPTLs also have important roles in lipid metabolism, angiogenesis and inflammation, but were considered 'orphan ligands' because no receptors were identified. Here we show that the immune-inhibitory receptor human leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse orthologue paired immunoglobulin-like receptor (PIRB) are receptors for several ANGPTLs. LILRB2 and PIRB are expressed on human and mouse HSCs, respectively, and the binding of ANGPTLs to these receptors supported ex vivo expansion of HSCs. In mouse transplantation acute myeloid leukaemia models, a deficiency in intracellular signalling of PIRB resulted in increased differentiation of leukaemia cells, revealing that PIRB supports leukaemia development. Our study indicates an unexpected functional significance of classical immune-inhibitory receptors in maintenance of stemness of normal adult stem cells and in support of cancer development.  相似文献   

19.
Lin DY  Zhang SZ  Block E  Katz LC 《Nature》2005,434(7032):470-477
Mammalian urine releases complex mixtures of volatile compounds that are used in reproduction, territoriality and conspecific recognition. To understand how such complex mixtures are represented in the main olfactory bulb, we analysed the electrophysiological responses of individual mitral cells to volatile compounds in mouse urine. In both males and females, urine volatile compounds evoke robust responses in a small subset of mitral cells. Fractionation of the volatile compounds using gas chromatography showed that out of the hundreds of compounds present, mitral cells are activated by single compounds. One cohort of mitral cells responded exclusively to male urine; these neurons were activated by (methylthio)methanethiol, a potent, previously unknown semiochemical present only in male urine. When added to urine, synthetic (methylthio)methanethiol significantly enhances urine attractiveness to female mice. We conclude that mitral cells represent natural odorant stimuli by acting as selective feature detectors, and that their activation is largely independent of the presence of other components in the olfactory stimulus.  相似文献   

20.
Hirotsu T  Saeki S  Yamamoto M  Iino Y 《Nature》2000,404(6775):289-293
The Ras-MAPK (mitogen-activated protein kinase) signal transduction pathway is well known to control cellular proliferation and differentiation in response to extracellular signals, but its other functions are less understood. In Caenorhabditis elegans this pathway regulates several developmental events, such as vulval induction and progression of meiosis, but its function in the nervous system is unknown. Here we report that the Ras-MAPK pathway is involved in olfaction in this organism. Mutational inactivation and hyperactivation of this pathway impairs efficiency of chemotaxis to a set of odorants. Experiments in which let-60 ras was expressed using a heat-shock promoter and a cell-specific promoter show that a normal activity of LET-60 Ras is required in mature olfactory neurons. Application of the odorant isoamylalcohol to wild-type animals leads to the activation of MAP kinase in olfactory neurons within 10 seconds. This induction is dependent on the function of the nucleotide-gated channel TAX-2/TAX-4 and the voltage-activated calcium channel subunit UNC-2. These results suggest a dynamic regulatory role for the Ras-MAPK pathway in perception and transmission of sensory signals in olfactory neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号