共查询到20条相似文献,搜索用时 0 毫秒
1.
Bipedalism has traditionally been regarded as the fundamental adaptation that sets hominids apart from other primates. Fossil evidence demonstrates that by 4.1 million years ago, and perhaps earlier, hominids exhibited adaptations to bipedal walking. At present, however, the fossil record offers little information about the origin of bipedalism, and despite nearly a century of research on existing fossils and comparative anatomy, there is still no consensus concerning the mode of locomotion that preceded bipedalism. Here we present evidence that fossils attributed to Australopithecus anamensis (KNM-ER 20419) and A. afarensis (AL 288-1) retain specialized wrist morphology associated with knuckle-walking. This distal radial morphology differs from that of later hominids and non-knuckle-walking anthropoid primates, suggesting that knuckle-walking is a derived feature of the African ape and human clade. This removes key morphological evidence for a Pan-Gorilla clade, and suggests that bipedal hominids evolved from a knuckle-walking ancestor that was already partly terrestrial. 相似文献
2.
Pollard KS Salama SR Lambert N Lambot MA Coppens S Pedersen JS Katzman S King B Onodera C Siepel A Kern AD Dehay C Igel H Ares M Vanderhaeghen P Haussler D 《Nature》2006,443(7108):167-172
The developmental and evolutionary mechanisms behind the emergence of human-specific brain features remain largely unknown. However, the recent ability to compare our genome to that of our closest relative, the chimpanzee, provides new avenues to link genetic and phenotypic changes in the evolution of the human brain. We devised a ranking of regions in the human genome that show significant evolutionary acceleration. Here we report that the most dramatic of these 'human accelerated regions', HAR1, is part of a novel RNA gene (HAR1F) that is expressed specifically in Cajal-Retzius neurons in the developing human neocortex from 7 to 19 gestational weeks, a crucial period for cortical neuron specification and migration. HAR1F is co-expressed with reelin, a product of Cajal-Retzius neurons that is of fundamental importance in specifying the six-layer structure of the human cortex. HAR1 and the other human accelerated regions provide new candidates in the search for uniquely human biology. 相似文献
3.
Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor 总被引:7,自引:0,他引:7
Enolase or 2-phospho-D-glycerate hydrolase catalyses the dehydration of 2-phosphoglycerate to phosphoenolpyruvate, which in turn is converted by pyruvate kinase to pyruvate. We describe here the crystallographic determination of the structure of yeast enolase at high resolution (2.25 A) and an analysis of the structural homology between enolase, pyruvate kinase and triose phosphate isomerase. Each of the two subunits of enolase forms two distinctive domains. The larger domain (residues 143-420) is a regular 8-fold beta/alpha-barrel, as first found in triose phosphate isomerase, and later in pyruvate kinase and 11 other functionally different enzymes. An analysis of the molecular geometries of enolase and pyruvate kinase based on the roughly 8-fold symmetry of the barrel showed a structural homology better than expected for proteins related by convergent evolution. We argue that enolase and pyruvate kinase have evolved from a common ancestral multifunctional enzyme which could process phosphoenolpyruvate in both directions along the glycolytic pathway. There is structural and sequence evidence that muconate lactonizing enzyme later evolved from enolase. 相似文献
4.
Adult stem cells maintain organ systems throughout the course of life and facilitate repair after injury or disease. A fundamental property of stem and progenitor cell division is the capacity to retain a proliferative state or generate differentiated daughter cells; however, little is currently known about signals that regulate the balance between these processes. Here, we characterize a proliferating cellular compartment in the adult Drosophila midgut. Using genetic mosaic analysis we demonstrate that differentiated cells in the epithelium arise from a common lineage. Furthermore, we show that reduction of Notch signalling leads to an increase in the number of midgut progenitor cells, whereas activation of the Notch pathway leads to a decrease in proliferation. Thus, the midgut progenitor's default state is proliferation, which is inhibited through the Notch signalling pathway. The ability to identify, manipulate and genetically trace cell lineages in the midgut should lead to the discovery of additional genes that regulate stem and progenitor cell biology in the gastrointestinal tract. 相似文献
5.
The immature cerebral cortex self-organizes into local neuronal clusters long before it is activated by patterned sensory inputs. In the cortical anlage of newborn mammals, neurons coassemble through electrical or chemical synapses either spontaneously or by activation of transmitter-gated receptors. The neuronal network and the cellular mechanisms underlying this cortical self-organization process during early development are not completely understood. Here we show in an intact in vitro preparation of the immature mouse cerebral cortex that neurons are functionally coupled in local clusters by means of propagating network oscillations in the beta frequency range. In the newborn mouse, this activity requires an intact subplate and is strongly synchronized within a cortical column by gap junctions. With the developmental disappearance of the subplate at the end of the first postnatal week, activation of NMDA (N-methyl-D-aspartate) receptors in the immature cortical network is essential to generate this columnar activity pattern. Our findings show that during a brief developmental period the cortical network switches from a subplate-driven, gap-junction-coupled syncytium to a synaptic network acting through NMDA receptors to generate synchronized oscillatory activity, which may function as an early functional template for the development of the cortical columnar architecture. 相似文献
6.
Substance P (SP) is an undecapeptide originally isolated from the gut and since shown to occur within neurones in several parts of the peripheral and central nervous systems. Immunohistochemical studies indicate an exceedingly dense network of SP-containing nerves within the myenteric plexus of the guinea pig ileum. These nerves are intrinsic to the gut wall and can release SP to contract the longitudinal muscle layer. We have previously shown that SP directly depolarizes myenteric neurones and that this depolarization has a time course and ionic mechanism similar to the slow excitatory postsynaptic potential (e.p.s.p.) which can be produced by electrical stimulation of presynaptic nerves within the myenteric ganglia. We wondered whether SP might mediate this slow synaptic potential. We report here that the SP depolarization and the slow e.p.s.p. are reversibly depressed by chymotrypsin, an enzyme which degrades SP, although the responses to acetylcholine, serotonin and an unknown hyperpolarizing transmitter are unaffected. The results provide direct evidence that a peptide can mediate chemical transmission between neurones in the mammalian nervous system. 相似文献
7.
The histocompatibility-Y (H-Y) antigen is a minor histocompatibility antigen which has been detected on cell surfaces from the heterogametic sexes of mammalian, bird, amphibian, teleost and invertebrate species. H-Y is thought to be a male-determining substance in mammals because of its almost perfect correlation with maleness among a variety of mammalian species. To characterize the molecular determinant responsible for H-Y specific serological activity, H-Y positive immunoabsorbent cells were first subjected to various treatments which alter protein or carbohydrate structure and then tested for their ability to absorb H-Y antisera. We present here evidence that the serological determinant of H-Y antigen is carbohydrate. 相似文献
8.
9.
Spitzer NC 《Nature》2006,444(7120):707-712
The construction of the brain during embryonic development was thought to be largely independent of its electrical activity. In this view, proliferation, migration and differentiation of neurons are driven entirely by genetic programs and activity is important only at later stages in refinement of connections. However, recent findings demonstrate that activity plays essential roles in early development of the nervous system. Activity has similar roles in the incorporation of newly born neurons in the adult nervous system, suggesting that there are general rules underlying activity-dependent development. The extensive involvement of activity makes it likely that it is required at all developmental stages as a necessary partner with genetic programs. 相似文献
10.
早期成岩作用研究进展及发展方向 总被引:8,自引:0,他引:8
早期成岩作用作为一个重要的研究领域受到广泛关注。概括总结了早期成岩作用的主要特点、地质响应和研究思路,介绍了在元素的迁移转化、硫酸盐还原反应、数学模型及微生物成岩等理论领域和多金属结核及早期成岩成矿、环境沉积学、土壤性质评价与改良等应用领域的主要研究进展。早期成岩作用研究具有广阔的发展前景,未来可能在以下3方面快速取得突破:研究区域将进一步扩大,湖泊、三角洲及土壤中的相应研究将得以加强;多层的稳态或非稳态的一维、二维或三维的早期成岩数学模型将得以建立;其研究方法和理论成果将被广泛应用于环境沉积学及环境监测和治理等领域中。 相似文献
11.
Neural inhibition forms a major mechanism by which the nervous system refines and elaborates its input. Several recent experiments have demonstrated the existence of inhibition between orientation-selective cells of the primary visual cortex of the cat and although the precise function of this inhibition is uncertain, there is evidence that it enhances orientation tuning and that it is involved in pattern recognition. Here we report a series of experiments which, on the basis of evoked potential responses to oriented stimuli, suggest that similar processes may exist in humans. Recordings from young infants further suggest that the machinery which mediates orientation-specific interactions may not be functional at birth, but develops only after 6-8 months. 相似文献
12.
早期成岩作用作为一个重要的研究领域受到广泛关注。概括总结了早期成岩作用的主要特点、地质响应和研究思路,介绍了在元素的迁移转化、硫酸盐还原反应、数学模型及微生物成岩等理论领域和多金属结核及早期成岩成矿、环境沉积学、土壤性质评价与改良等应用领域的主要研究进展。早期成岩作用研究具有广阔的发展前景,未来可能在以下3方面快速取得突破:研究区域将进一步扩大,湖泊、三角洲及土壤中的相应研究将得以加强;多层的稳态或非稳态的一维、二维或三维的早期成岩数学模型将得以建立;其研究方法和理论成果将被广泛应用于环境沉积学及环境监测和治理等领域中。 相似文献
13.
Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era 总被引:5,自引:0,他引:5
Methanogenic microbes may be one of the most primitive organisms, although it is uncertain when methanogens first appeared on Earth. During the Archaean era (before 2.5 Gyr ago), methanogens may have been important in regulating climate, because they could have provided sufficient amounts of the greenhouse gas methane to mitigate a severely frozen condition that could have resulted from lower solar luminosity during these times. Nevertheless, no direct geological evidence has hitherto been available in support of the existence of methanogens in the Archaean period, although circumstantial evidence is available in the form of approximately 2.8-Gyr-old carbon-isotope-depleted kerogen. Here we report crushing extraction and carbon isotope analysis of methane-bearing fluid inclusions in approximately 3.5-Gyr-old hydrothermal precipitates from Pilbara craton, Australia. Our results indicate that the extracted fluids contain microbial methane with carbon isotopic compositions of less than -56 per thousand included within original precipitates. This provides the oldest evidence of methanogen (> 3.46 Gyr ago), pre-dating previous geochemical evidence by about 700 million years. 相似文献
14.
15.
16.
顺铂自二十世纪七十年代起被批准并广泛应用于肿瘤的临床治疗,对多肿瘤疗效显著.但水溶性小、毒副作用大及获得性耐药等缺点极大的限制了铂类配合物的发展与应用.为了获得高效低毒的抗肿瘤药物,科学家们合成了数以千计的铂类配合物,并取得了阶段性进展.本文综述了近五年合成的铂类配合物的结构及其抗肿瘤活性与机制,分成:①具有空间位阻的铂(Ⅱ)配合物;②多核铂(Ⅱ)配合物;③含硫、磷酸(盐)配位原子铂(Ⅱ)配合物;④改变配体或离去基团合成的配合物及⑤铂(Ⅳ)配合物等五个类型分别阐述. 相似文献
17.
Evolution of genetic mechanisms controlling petal development. 总被引:21,自引:0,他引:21
Molecular genetic studies in Arabidopsis thaliana and other higher-eudicot flowering plants have led to the development of the 'ABC' model of the determination of organ identity in flowers, in which three classes of gene, A, B and C, are thought to work together to determine organ identity. According to this model, the B-class genes APETALA3 (AP3) and PISTILLATA (PI) act to specify petal and stamen identity. Here we test whether the roles of these genes are conserved throughout the angiosperms by analysing the expression of AP3 and PI orthologues in the lower eudicot subclass Ranunculidae. We show that, although expression of these orthologues in the stamens is conserved, the expression patterns in the petals differ from those found in the higher eudicots. The differences between these expression patterns suggest that the function of AP3 and PI homologues as B-class organ-identity genes is not rigidly conserved among all angiosperms. These observations have important implications for understanding the evolution of both angiosperm petals and the genetic mechanisms that control the identities of floral organs. 相似文献
18.
A new subfamily of the alpha-globin-like family has recently been identified in higher primates, rabbit, galago and possibly the horse. One member of this subfamily, theta 1, is downstream from the adult alpha 1-globin gene. In orang-utan, but not in rabbit or galago, the theta 1-gene appears to be structurally intact, suggesting that it may be functional in this species. The orang-utan theta 1-gene possesses initiation and termination codons, and the predicted polypeptide differs from the orang-utan alpha 1-globin by 55 amino acids. The upstream promoter boxes CCAAT and ATA are present, although approximately 150 base pairs (bp) farther upstream than in the alpha 1-gene. This structural difference in the promoter between the orang-utan theta 1- and alpha 1-genes has led Proudfoot to speculate that the theta 1-gene may be inactive. We have now cloned the theta 1- and alpha 1-globin genes from the olive baboon, and have compared their sequences with those of orang-utan. The unique promoter structure of the orang-utan theta 1-gene is highly conserved in baboon, although the orang-utan and baboon diverged nearly 30 million years ago. The coding sequences of the two theta 1-genes differ by only 6.3% with 22 out of 27 nucleotide substitutions being codon third position silent changes. These data support the view that the theta 1-gene has been functional in the baboon, orang-utan, and by implication, in man. We also estimate that the duplication event generating the theta 1- and alpha-globin-like subfamilies may have occurred as much as 260 million years ago. 相似文献
19.
20.