首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
应用PCR-RFLP和测序分析首次对青藏高原腹地三江源自然保护区高寒草甸土壤反硝化细菌基因(nirKnosZ)的多样性和系统发育进行了探讨. 研究选用了4个海拔在4600 m以上的高寒草甸样地, 主成分分析表明样地间具有不同的理化性状. 经过PCR-RFLP分析, 在4个样品中分别获得253个nirK基因克隆和283个nosZ基因克隆, 其中nirK基因具有78个可操作分类单元(OTUs), nosZ基因具有120个OTUs. 环境因子分析表明, 海拔高度和土壤C/N比可能是影响土壤反硝化细菌的重要因素. 本研究还选取了36个nirK克隆和17个nosZ克隆进行部分基因测序分析, DNAMAN比较表明, nirKnosZ基因序列间分别具有69%~98%和57%~97%的相似性. 在系统发育树中, 序列都可以分为4个不同的簇, 部分测定的基因序列与属于Proteobacteria的3个系统发育亚簇(α, β和γ)的已知反硝化细菌具有一定的亲缘关系, 另外一些序列与非培养细菌具有较近的亲缘关系.  相似文献   

2.
基于青藏高原泽库盆地31个样点表层苔藓样品孢粉组合分析和植被调查数据,揭示了高寒灌丛草甸花粉组合特征及其花粉来源范围,阐明了主要花粉类型对植被组成的指示意义.结果显示:研究区花粉组合以莎草科、紫菀属、毛茛科、蔷薇科和禾本科等为主,其主要由样点周围40 km范围内植被产生(花粉贡献率83%);花粉组合中出现的桦属、松属和云杉属等乔木类型花粉由风力远距离搬运而来. 0~100 m范围,研究区各样点间植被组成差异显著,与花粉组合的对应关系差; 0~3 km范围,各样点间植被组成差异性减小、整体趋于均质化,与花粉组合的对应关系逐渐提升;据此认为,考虑花粉组合贡献率和区域植被组成影响后的花粉-植被数量关系更能真实反映研究区花粉组合与区域植被组成的对应关系.此外,青藏高原灌丛草甸区湖泊表层花粉组合可能受区域外花粉或隐域性植被的影响较大,花粉组合中出现的大量蒿属和藜科花粉并不真实地代表区域植被组成,依据该区域湖泊沉积花粉组合变化推测区域植被演替及气候变化时应予以排除.  相似文献   

3.
王俊峰  王根绪  王一博  李元寿 《科学通报》2007,52(13):1554-1560
采用静态箱-便携式红外色谱法对青藏高原风火山地区沼泽草甸和高寒草甸两类生态系统CO2排放通量进行了研究. 结果表明, 生长期内两类生态系统之间及同一生态系统内部不同的退化程度之间CO2排放通量均存在较大差异. 沼泽草甸CO2排放通量随着退化程度的加剧而逐渐降低, 而高寒草甸除5月份之外, CO2排放通量随着退化程度的加剧而逐渐提高; 未退化沼泽草甸较高寒草甸CO2的排放通量同比高出65.1%~80.3%; 中度退化沼泽草甸较高寒草甸CO2的排放通量同比高出22.1%~67.5%; 然 而, 严重退化的高寒草甸比沼泽草甸CO2的排放通量反而高出14.3%~29.5%. 5 cm处土壤水分、5 cm处土壤温度和地上生物量与CO2排放通量显著相关, 是控制CO2排放主要环境因子  相似文献   

4.
武高林  杜国祯 《自然杂志》2007,29(3):159-164
近年来,青藏高原草地生态环境安全引起人们的高度重视,但是其生态环境仍处于不断恶化的状态。本文分析了青藏高原高寒草地生态系统的草地退化现状、退化因素和改良技术研究等,并针对其现状和恢复目标,为高寒草地生态系统和草地畜牧业的可持续发展提出了一些建议:加强高寒草地生态系统的基础研究,建立综合的草地改良和恢复技术体系,加强草地生态系统的管理,建立合理的草地放牧制度体系,并建立高效的饲草供应人工草地,在退化草地上建立集约化的高效社区模式草地畜牧业体系,改变退化草地生态功能,是实现退化高寒草地生态恢复、生物多样性保护和经济可持续发展的最佳措施。  相似文献   

5.
全球气候变化背景下气温日较差(amplitude of diurnal temperature,ADT)的减小将会对高寒生态系统的碳收支产生重要影响.基于涡度相关系统观测资料,研究祁连山南麓高寒草甸2002~2016年生长季(6~9月)ADT在日、月、年尺度上对CO2通量影响,为预测高寒草甸生态系统碳平衡对未来气候变化...  相似文献   

6.
增温可以改变植物的生长,不同植被类型的响应方式有差异.植物根系是植物生产量的重要组成部分,但对其增温响应的研究仍然较少.本研究采用开顶式生长室(OTC)模拟增温的方法,对比了长期增温对青藏高原矮嵩草草甸和金露梅灌丛群落地下生物量和有机碳含量的影响.通过分析不同土层地下生物量的垂直分布、土壤和根系含碳量,发现在长期增温条件下:(1)矮嵩草草甸地下生物量显著减少;(2)2种草甸地下生物量分配明显向深层转移;(3)2种草甸植物根系总碳含量变化不显著,矮嵩草草甸10~30 cm土层根含碳量增加,金露梅灌丛草甸20~30 cm土层的根系碳含量减少;(4)2种草甸土壤总碳含量无显著变化(0~30cm),但20~30 cm土层矮嵩草草甸土壤有机碳含量增加,金露梅灌丛草甸土壤有机碳含量降低.2种草甸地下资源分配差异将影响全球变暖背景下该地区的植被演替和碳循环.  相似文献   

7.
邵全琴  肖桐  刘纪远  齐永青 《科学通报》2011,56(13):1019-1025
高寒草甸是青海三江源地区的主体生态系统. 高寒草甸的根系盘结, 形成坚实的“地毯式”草皮层, 固土持水能力强, 是维持“中华水塔”的主要贡献者. 为了定量分析典型高寒草甸的抗侵蚀能力, 本文选择草皮层完整、植被覆盖度在60%以上的典型高寒草甸坡面, 进行了土壤侵蚀的137Cs核素示踪研究. 结果表明: (1) 各采样坡面土壤侵蚀强度属微度-轻度侵蚀水平, 玉树县玛龙村坡面多年平均土壤侵蚀模数为464 t km-2 a-1, 玛多县野牛沟乡坡面为415 t km-2 a-1, 称多县珍秦乡坡面为875 t km-2 a-1. (2) 在坡面尺度上, 土壤侵蚀速率与植被覆盖度呈负相关, 植被覆盖度越高, 坡面侵蚀模数越小(P<0.01, R2=0.986); 在样点尺度上, 土壤侵蚀速率与植被覆盖度之间也具有较好的负相关关系(P<0.01, R2=0.555). (3) 三江源地区高寒草甸坡面侵蚀强度及其与植被覆盖度的关系表明, 植被是土壤侵蚀的最主要影响因素之一, 具有完整草皮层且植被覆盖度较高的高寒草甸, 对于土壤保护和防止水土流失具有重要的意义.  相似文献   

8.
退化高寒草地的近自然恢复:理论基础与技术途径   总被引:1,自引:0,他引:1  
近几十年来,青藏高原高寒草地植被活动整体上趋于向好,但大部分草地仍然存在不同程度的退化,局部有恶化的态势.在青藏高原生态屏障保护与建设过程中,由于建植或改良的草地草种单一、优良乡土草种少,加之受高寒气候的限制,群落稳定性和可持续性不强,使得生态系统多功能性和多服务性往往难以完全恢复.因此,探索行之有效的可持续恢复模式迫在眉睫.本文提出了对青藏高原高寒草地实施近自然恢复(close-to-nature restoration)的理念,从生物多样性、生态系统多功能性和多服务性、生态系统稳定性的理论出发,结合青藏高原高寒生态系统的特点,论述了近自然恢复是退化高寒草地生态恢复的必然选择.据此,本文提出优良乡土草种扩繁、组配及其补播技术是高寒草地近自然恢复技术亟须解决的瓶颈,土壤养分及微生物调控相结合是"近自然恢复"技术的重要辅助措施.该理论与技术途径为青藏高原退化高寒草地生态系统恢复提供了一个基于自然的解决方案.  相似文献   

9.
高寒草地生态系统是青藏高原主要生态系统类型之一,其结构和功能对全球变化敏感.过去几十年,随着气候变化与人类活动加剧,高寒草地生态系统结构和功能发生了巨大变化,然而其变化的自然及人为相对贡献率存在较大争议.本研究基于优化的模型差值法评估了1990~2013年青藏高原高寒草地变化的人为相对贡献率.研究结果表明,这一时期青藏高原高寒草地生产力显著增加,人类活动主导了草地生态系统净初级生产力的变化,人为相对贡献率达到74.0%,人类活动主导草地生产力增加的面积占比大于主导草地生产力减少的面积占比,青藏高原草地可能已由过度利用转变为适度保护,但其特征呈现复杂性. 2000年后人类活动影响急剧增强,表明同期实施的大型生态恢复工程可能增加了高寒草地生产力.空间结果表明,两个时期相比有36.7%的草地生产力变化由气候变化主导转为人类活动主导,其中主导草地生产力减少是增加的两倍以上.随着我国生态文明建设的不断推进,青藏高原高寒草地生态功能总体上开始呈恢复趋势,但人类活动主导草地生产力减少的区域也在增加,该区域可能已趋于人地关系发生转变的临界点.因此,退化草地的恢复与治理仍是青藏高原生态安全屏障建设的重要支点,青藏高原草地适应性管理已刻不容缓.  相似文献   

10.
近10年青藏高原高寒草地物候时空变化特征分析   总被引:3,自引:0,他引:3  
植物物候是陆地生态系统对气候变化响应的最佳指示器,其变化研究对于深入地理解和预测陆地生态系统的动态变化具有重要的意义.本文利用SPOTVGT归一化植被指数(NDVI)对青藏高原1999~2009年间高寒草地物候的时空变化进行了研究,结论如下:①青藏高原高寒草地物候多年均值的空间分布与水热条件关系密切.由东南向西北,随着水热条件的恶化,生长季始期(SOG)逐渐推迟,生长季末期(EOG)逐渐提前,生长季长度(LOG)逐渐缩短.海拔在物候的地域分异中扮演着重要作用,但存在3500m分界线.其下,物候随海拔变化波动较大,其上物候与海拔关系密切;②1999~2009年间,青藏高原高寒草地SOG整体上呈提前趋势,变化幅度为6d/10a(R2=0.281,P=0.093);EOG呈推迟趋势,变化幅度为2d/10a(R2=0.031,P=0.605);LOG呈延长趋势,变化幅度为8d/10a(R2=0.479,P=0.018).SOG提前、EOG推迟和LOG增长的区域主要分布在高原的东部.SOG推迟、EOG提前和LOG缩短的区域主要分布在高原的中、西部,其中高原绝大部分区域的SOG呈显著提前趋势,尤其是高原的东部地区;③青藏高原高寒草地物候年际变化在不同的海拔和自然带上分异显著.高海拔地区的年际变化趋势要比低海拔复杂;青东祁连山地草原带的变化幅度和显著水平最高,而藏南山地灌丛草原带最低.  相似文献   

11.
采用遥感和地理信息系统技术, 编制了青藏铁路沿线50 km范围生态系统类型和脆弱度分区图, 用叠图法研究了各类工程活动对沿线生态系统的影响范围和影响面积以及影响指数. 类比青藏公路, 研究了青藏铁路高寒生态系统的恢复机制, 预测了其恢复程度和恢复速度. 研究表明, 铁路工程对高寒生态系统的影响程度主要取决于地表原始土壤受破坏和扰动的程度以及生态系统本身的脆弱性. 植被覆盖度与物种丰富度的恢复与地表原始土壤的破坏程度呈显著负相关关系, 与恢复年限、年平均降水量和年平均相对湿度呈显著正相关关系, 而与海拔高度及气温无明显的相关关系. 在年降水量大于200 mm的地段, 只要地表能够保留一定比例的原始土壤, 工程结束后30年左右物种多样性基本上可恢复到破坏前的水平, 而植被覆盖度至少需要45~60年以上才能恢复到破坏前的水平.  相似文献   

12.
13.
根据NOAA/AVHRR (National Oceanic and Atmospheric Administration/Advanced Very High Resolution Radiometer)卫星归一化植被指数(NDVI)数据和CASA(Carnegie-Ames-Stanford Approach)模型的计算结果,过去30 年间(1982-2011 年),青藏高原生长季植被覆盖度和植被净初级生产力(NPP)呈总体上升态势, 植被总体变好。青藏高原生态系统碳汇功能增强,占全国增加碳汇的10%左右。气候条件的变化是青藏高原植被总体变好的最为重要的驱动因子,退牧还草等大型生态工程的生态效应也比较显著。青藏高原植被总体变好的同时,存在着区域不平衡。植被变差的区域主要集中在海拔较高的、生态更为脆弱的藏北高原、西藏“一江两河”和三江源的部分地区,尤其是藏北高原西部的高寒草原和高寒荒漠出现了较为严重的草地退化,其原因是气候变暖变干叠加人类活动(如超载放牧等)的影响。为了应对气候变化和人类活动对青藏高原植被的影响,应该加强青藏高原生态系统变化长期监测系统与平台建设,加大生态补偿和大型生态工程的实施力度。  相似文献   

14.
青藏高原多年冻土变化与工程稳定性   总被引:4,自引:0,他引:4  
吴青柏  牛富俊 《科学通报》2013,58(2):115-130
气候变化和工程活动引起多年冻土温度升高、活动层厚度增大、地下冰融化, 导致路基工程稳定性变化. 本研究在综述青藏高原多年冻土变化和冻土工程研究重要进展的基础上, 利用青藏公路和青藏铁路沿线冻土与工程监测数据, 给出了青藏高原多年冻土温度和活动层厚度变化及其与气候变化的关系、多年冻土对工程活动的响应过程, 青藏铁路工程稳定性动态变化以及块石结构路基降温机制和过程. 最后, 提出了在气候变化下冻土工程将来亟待解决的关键科学问题.  相似文献   

15.
湖泊富营养化及其生态系统响应   总被引:13,自引:0,他引:13  
我国是一个多湖泊的国家.其中约三分之一是淡水湖泊,主要分布在长江中下游地区.这些湖泊中的绝大部分已处于中营养或富营养水平.湖泊富营养化是当前我国湖泊面临的主要生态环境问题之一.湖泊富营养化后会导致一系列的生态系统异常响应.这些响应包括沉水植物消亡、蓝藻水华频发、微生物的生物量与生产力增加,生物多样性下降,营养盐的循环与利用效率加快等.整个湖泊生态系统,也会伴随着富营养化的发展,呈现出生物多样性下降、生物群落结构趋于单一、生态系统趋于不稳定的现象.在浅水湖泊中,还会进一步导致从"清水态"的草型生态系统,逐步转换为"浑水态"的藻型生态系统.生态系统的这种演替机制,推测是水生植物与浮游植物利用营养盐的效率不同所致.而对于严重富营养化的湖泊,生态系统最终的演替趋势则是从浮游植物为主的自养型湖泊转化为以微生物、原生动物等为主的异养型湖泊.  相似文献   

16.
●如果你体内的10兆细胞被蒸发,头发、指甲以及其他的一切组织都不复存在了,此时绝不会什么也没留下:一个由细菌、病毒以及其他潜伏在体内的微生物组成的生物圈会悬浮于空中,并勾勒出你的皮肤、肺和消化道。即使你死了,你的生物圈还是会留存下来。  相似文献   

17.
激光雷达在森林生态系统监测模拟中的应用现状与展望   总被引:9,自引:0,他引:9  
激光雷达是一种新兴的主动遥感技术,能够在多重时空尺度上获取森林生态系统高分辨率的三维地形、植被结构参数.其对森林生态系统变化的精确、高效监测和模拟在认识这些变化如何影响陆地生态系统碳循环、全球气候变化,并促进生物多样性保护方面将发挥重要作用.本文拟对激光雷达技术的概念和发展应用简史作一介绍,通过分析其在数字地形产品生成、森林生态参数提取反演应用中的主流算法和优势,继而阐明其推广应用所面临的挑战,最后指出未来激光雷达技术在生态学应用中可能的研究热点.本文认为,构建集太空、天空、地面多源传感器于一体的数字生态系统是未来生态系统观测网络发展的必然趋势,而激光雷达技术能够在数字生态系统建设过程中搭建可靠的数据支撑体系,最终有助于决策部门调控、优化人与环境关系,实现二者和谐共存.  相似文献   

18.
邓涛  吴飞翔  王世骐  苏涛  周浙昆 《科学通报》2019,64(27):2894-2906
新生代古近纪/新近纪之交是地球生命环境演化史上的重要节点,生物界总体面貌更趋近现代.青藏高原的隆升对该地区的陆地生态系统产生了重大影响,最终形成现代高原冰冻圈环境与生态体系.通过研究近年来高原腹地伦坡拉、尼玛盆地古近纪-新近纪沉积中产出的大量动植物化石,发现青藏高原生态系统在古近纪/新近纪之交经历了由热带、亚热带生态体系向高原型生物群落的重大转折.以上地点渐新世地层中的鱼类、植物和昆虫化石证据表明,高原腹地在26~24 Ma仍为温暖湿润的低地,来自印度洋的暖湿气流还可深入藏北.这一时期动植物以攀鲈和棕榈为代表,不仅反映热带、亚热带气候特征,并且表明当时盆地可能的最大海拔仅有2300 m左右.自中新世开始,高原陆地生态系统整体上向现代型过渡.裂腹鱼开始出现,并自此向特化等级演化,至上新世出现高度特化种类.早中新世植被以北温带落叶阔叶树种占优势,同时出现大量针叶树,草本植物进一步发展,反映气候已具温带特征.哺乳动物在早中新世出现适应温带森林的近无角犀等,而以披毛犀为代表的寒冷适应性冰期动物祖先出现于上新世.青藏高原生态系统这一重大转折与高原主体在早中新世隆升到接近3000 m高度所产生的降温效应相关,同时也受到全球气候转凉的影响.  相似文献   

19.
青藏高原高寒灌丛CO2通量日和月变化特征   总被引:7,自引:0,他引:7  
采用涡度相关法对青藏高原高寒灌丛CO2通量进行连续观测的结果表明, 青藏高原高寒灌丛CO2通量呈明显的日和月变化特征. 就日变化而言, 暖季(7月)CO2通量峰值出现在12:00左右(&#8722;1.19 g CO2/(m2·h) &#8722;1), 08:00~19:00时CO2净吸收, 而20:00~07:00为CO2净排放; 冷季(1月)CO2通量变化振幅极小, 除11:00~17:00时少量的CO2净排放以外(0.11 g CO2/(m2·h)&#8722;1左右), 其余时段CO2通量接近于零. 从月变化来看, 6~9月为CO2净吸收阶段, 8月CO2净吸收最大, 6~9月CO22净吸收的总量达673 g CO2/m2; 1~5月及10~12月为CO2净排放, 共排放446 g CO2/m2, 4月CO2净排放最大. 全年CO2通量核算表明, 无放牧条件下青藏高原高寒灌丛是显著的CO2汇, 全年CO2净吸收量达227 g CO2/m2.  相似文献   

20.
典型陆地生态系统对气候变化响应的定量研究   总被引:1,自引:0,他引:1  
森林、农田和草地生态系统对气候变化响应定量研究进展的综合分析表明:近一个世纪以来的森林、农田和草地生态系统对气候变化有很强的响应,诸多生态系统类型的组成、结构和分布已发生了显著变化;由于病虫害、极端气候频发,植物物种的死亡率增加、生产力出现下降趋势;典型陆地生态系统对气候响应的未来情景分析结果表明,高海拔地区和高纬度地区的生态系统类型的结构、分布、物种和生产力将发生较大变化;然而,由于生物群落的相互作用,各种生态系统对气候变化的响应很复杂,目前人类对典型陆地生态系统变化的认识仍然处在很初级的阶段.尤其是在气候变化对植物物种的影响、干旱和极端事件的后果以及病虫害的影响等方面,还没有明确的结论;根据目前的研究积累,还无法给出气候变化对典型陆地生态系统影响的综合定量评估,需要改进区域气候模拟,尤其是降雨量的模拟,需要提高植物物种对气候、病虫害和大气成分响应的认识.以典型陆地生态系统对全球气候变化响应机理研究成果为基础、集成空间对地观测数据和地面实测数据的多尺度生态系统动态模拟分析平台,到目前为止,仍是亟待填补的空白.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号