首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
采用Gleeble-3500热模拟机,在变形温度为950~1 150℃、应变速率为0.001~10s-1的条件下,研究了粗大柱状晶粒纯镍的热变形行为和加工图.结果表明:热压缩过程中流变应力随应变速率增大而增大,随变形温度降低而增大.流变应力与应变速率、变形温度之间的关系用Zener-Hollomon参数来描述,热变形激活能为312.4kJ/mol.基于动态材料模型(DMM)热加工图及结合合金相显微组织分析,得到纯镍较优的热加工参数:变形温度为1 060~1 120℃,应变速率为0.03~0.20s-1的蛋形区域.  相似文献   

2.
纯镍N6平面热压缩变形行为及加工图   总被引:1,自引:0,他引:1  
利用Gleeble-3800热模拟试验机对纯镍N6在变形温度800~1100℃,应变速率5~40 s-1,应变量70%条件下进行了高温塑性变形压缩试验,分析纯镍N6高温高应变速率热变形行为,得到了材料在不同变形参数条件下的组织变化规律及流变应力变化曲线,利用动态材料模型绘制出了纯镍N6在不同应变条件下的热加工图。通过对组织及热加工图的分析研究,得出变形温度为1000~1100℃,应变速率为5~7 s-1或20~40 s-1以及变形温度为800~900℃,应变速率为5~10 s-1为纯镍N6材料高温高应变速率热变形的两个合理变形参数区间,在参数区间内N6组织均匀;而流变失稳区变形参数条件下得到的组织比较紊乱,晶粒大小不一。纯镍N6热变形后的晶粒尺寸随变形温度升高及应变速率减小而增大。  相似文献   

3.
对BFe30-1-1合金在变形温度为750~1000℃,应变速率为0.01~10s—1的条件下使用Gleeble-1500D热模拟机进行高温热压缩试验,研究其热加工行为.获得了该合金在高温下的真应力-真应变曲线,并分析了其流变应力的变化规律.构建了BFe30-1-1合金的热变形方程,基于动态材料模型绘制其热加工图,并结合热压缩后的合金微观组织分析热加工图.结果表明:变形条件对加工图有明显影响,在较低的应变速率和较高的温度条件下,能量耗散效率较大.在应变量分别为0.2、0.4、0.6、0.8的热加工图基础上,分析合金在不同变形条件下的动态再结晶组织特性及流变失稳显微组织,最终得到该合金最佳热加工温度为830~950℃,应变速率为0.01~0.05s—1.  相似文献   

4.
该文所研究的N12160合金等温热压实验是在Gleeble-3500热模拟试验机上进行的。获得了N12160合金在应变速率为0.01~5s~(-1)、变形温度为950℃~1200℃条件下的真应力-真应变曲线。该文采用Arrhenius方程描述了该合金的流变应力行为,同时基于动态材料模型(DMM)建立了N12160合金在不同应变量下的热加工图研究。结果表明:在热压缩变形过程中,流变应力随应变速率的增加而增加,随变形温度的增加而减小。根据热加工图以及微观组织观察得出N12160合金适宜热加工区域的变形参数为:ε=0.02~0.6s~(-1),T=1000℃~1080℃和■=0.2~2s~(-1),T=1080℃~1200℃。  相似文献   

5.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,在变形温度650~850℃、应变速率0.001~10 s-1和总压缩应变量50%的条件下,对Cu-Cr-Zr合金的流变应力行为进行研究.通过应力-应变曲线和显微组织图分析了合金在不同应变速率、不同应变温度下的变化规律.结果表明:应变速率和变形温度对合金再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也同样容易发生动态再结晶,并且对应的峰值应力也越小.从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程.研究分析Cu-Cr-Zr合金的热加工性能,可为生产实践提供理论指导与借鉴.  相似文献   

6.
采用Gleeble-1500热压缩模拟试验机在变形温度310~510℃、应变速率0.001~10 s-1的条件下对Al-1.03Mg-1.00Si-0.04Cu铝合金进行热压缩实验,研究该合金热变形行为及热加工特征,建立该合金热变形时的本构方程和加工图.研究结果表明:Al-1.03Mg-1.00Si-0.04Cu铝合金热变形过程中,随着应变速率的增加和变形温度的降低,流变应力上升,合金流变应力达到峰值后曲线呈现稳态流变特征;合金变形激活能Q平均值为170.878kJ/mol,高温变形行为可用双曲正弦形式的本构方程来描述;根据动态材料模型建立合金的加工图,在320~400℃和0.001~0.005 s-1范围内变形时加工图上出现一个动态回复的峰区,峰值效率为27%;Al-1.03Mg-1.00Si-0.04Cu铝合金高温变形时,Mg2Si相的析出有效阻碍了位错运动,合金峰区下变形激活能大于多晶纯铝的激活能.  相似文献   

7.
采用Gleeble-1500D型热模拟试验机,在变形温度为250~450 ℃,应变速率为0.01~1 s-1,最大应变量为0.85的条件下,对AZ31-0.5Sr-1.5Y进行单向热压缩实验。对材料的热变形行为和热加工性能进行了研究,建立了合金热变形过程中的本构方程和热加工图,并结合金相显微组织观察对加工图进行了分析。结果表明:AZ31-0.5Sr-1.5Y在热变形过程中的稳态流变应力可用双曲正弦函数关系式进行描述,其应变激活能为186.83 kJ/mol,热加工图分析表明,在本实验条件下,当真应变为0.6时,材料存在着非稳态流变区,其温度为250 ~300 ℃,应变速率为0.3~1 s -1,材料的最佳热加工工艺参数为:温度300~400 ℃,变形速率0.01 ~1 s -1。  相似文献   

8.
为了解决Cr20 Ni80电热合金锻造开裂的问题,在Gleeb-1500D热模拟试验机上对该合金进行热压缩试验,研究变形温度为900~1220℃,应变速率为0.001~10 s-1条件下的热变形行为,并根据动态材料模型建立合金的热加工图.合金的真应力-真应变曲线呈现稳态流变特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中稳态流变应力可用双曲正弦本构方程来描述,其激活能为371.29 kJ·mol-1.根据热加工图确定了热变形流变失稳区及热变形过程的最佳工艺参数,其加工温度为1050~1200℃,应变速率为0.03~0.08 s-1.优化的热加工工艺在生产中得到验证.  相似文献   

9.
为了获得镍钛形状记忆合金塑性加工最佳工艺参数,采用等温压缩实验研究了名义成分为Ni_(50.9)Ti_(49.1)(原子分数)的形状记忆合金在温度为600~1 000℃和应变为0.001~1 s_(-1)条件下的变形行为,并基于动态材料模型构建了该合金的热加工图。结果表明,当应变速率一定时,Ni_(50.9)Ti_(49.1)合金的流变应力随着变形温度的升高而减小;而当变形温度一定时,流变应力随着应变速率的增大而增大。Ni_(50.9)Ti_(49.1)合金的高η值区域随着真应变的增大而逐渐减小,且该Ni_(50.9)Ti_(49.1)合金的热变形失稳区随着真应变的增大而增大,这说明材料的热加工性能随着变形程度的增大而变差。Ni_(50.9)Ti_(49.1)合金的最佳热加工区域为具有高η值的稳定加工区,即温度为700~950℃,应变速率为0.005~0.05 s_(-1)。  相似文献   

10.
为研究2Cr12Ni Mo1W1V超临界马氏体不锈钢的高温变形行为,对其进行热压缩试验,得到其在变形温度为1 123~1 373 K,应变速率为0.005~5 s-1的真应力-真应变曲线,对流变应力特征进行研究,分析其高温变形的物理本质。采用Zener-Hollomon参数法构建动态材料模型(DMM),以热压缩试验为基础,建立不同应变下的热加工图。根据变形稳定阶段的热加工图确定该马氏体不锈钢热变形的失稳区和安全区。研究结果表明:采用该合金的高温塑性变形本构模型所得预测值与实验值拟合程度高,表明该合金在热变形过程中的流变应力可用构建的双曲正弦本构模型来描述;热加工图受变形量影响较大,当变形较小时,安全区随着应变增加而发生迁移,变形进入稳定阶段后,安全区保持恒定;在低温高应变区(温度为1 200~1 280 K,应变速率为1~5 s-1)以及高温低应变区(温度为1 320~1 400 K,应变速率为0.1~0.3 s-1)这2个区域为变形安全区,适合2Cr12Ni Mo1W1V超临界马氏体不锈钢进行热加工。  相似文献   

11.
采用热模拟试验机对Ti-5Al-5Mo-5V-1Cr-1Fe合金进行等温压缩试验,获得变形温度为750~900℃和应变速率为0.001~1 s 1时的真应力真应变曲线,并运用修正后的试验数据建立真应变为0.7的热加工图。通过显微组织观察,分析合金的变形机理,确定热变形失稳区。研究结果表明:Ti-5Al-5Mo-5V-1Cr-1Fe合金加工温度范围较宽,当加工温度低于800℃且变形速率大于0.1 s 1时易发生绝热剪切,造成流变失稳;随着变形温度升高,功率耗散因子η有增大趋势,合金的流动软化机制由动态回复逐渐变为动态再结晶,显微组织也随之细化、均匀。  相似文献   

12.
The hot deformation behaviors of GH4706 alloy were investigated using compression tests in a deformation temperature range from 900℃ to 1200℃ with a strain rate range of 0.001–1 s?1. Hot processing maps were developed on the basis of the dynamic material model and compression data. A three-dimensional distribution of power dissipation parameter (η) with strain rate and temperature reveals that η decreases in sensitivity with an increase in strain rate and a decrease in temperature. Microstructure studies show that the grain size of GH4706 alloy increases when η is larger than 0.32, and the microstructure exhibits local deformation when η is smaller than 0.23. The hot processing map at the strain of 0.7 exposes a domain peak at η=0.32 for the temperature between 940℃ and 970℃ with the strain rate from 0.015 s?1 to 0.003 s?1, and these are the optimum parameters for hot working.  相似文献   

13.
TC4钛合金在航空航天工业中有着广泛的应用,热塑性加工中的微观组织演变对其使用性能具有重要的影响。该文通过热-力实验分析,得到TC4合金的加工图,并将加工图信息集成在有限元分析中,对板材轧制工艺进行分析。对TC4钛合金进行等温单向压缩实验获得了材料的流动应力,变形温度为800~1 050℃,应变速率为0.01~20s-1。采用动态材料模型(dynamic material model,DMM)绘制出TC4钛合金的加工图,并通过对压缩的微观组织检查分析验证了加工图的有效性。由加工图可知,在1 000~1 050℃应变速率0.01s-1的区域稳定性最好,为超塑性成形区域,在800~900℃应变速率0.1~20s-1的条件不利于塑性加工,应当避免在此区域加工。通过二次开发,将加工图的信息作为有限元程序DEFORM-2D的后处理变量在成形件中显示,从而直观地显示板材轧制变形不同位置的成形性能。在TC4轧制过程中,板坯基本处于功率耗散效率较高的安全区,有利于材料塑性成形。  相似文献   

14.
在变形温度为900~1060℃和应变速率为0.001~10s-1条件下,对Ti62421s合金进行变形量为60%的热压缩变形,以研究Ti62421s合金的热压缩流变应力行为.研究温度与应变速率对Ti62421s热变形流变应力的影响,建立Ti62421s合金热变形流变应力的本构方程和加工图.研究结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳:当在高应变速率(10s-1)下变形时,出现不连续屈服现象:应力峰值随应变速率的增大而增大,随温度的升高而呈减小趋势:合金最佳变形工艺参数为:温度θ=980℃,应变速率(ε)=0.01~0.1s-1.  相似文献   

15.
采用Gleeble-1500热模拟试验机进行了T91钢的压缩试验,研究了变形温度为1100~1250℃、应变速率为0.01~1 s-1时该钢的变形行为,分析了流变应力与应变速率和变形温度之间的关系,计算了高温变形时应力指数和变形激活能,并采用Zener-Hollomon参数法构建该钢高温塑性变形的本构关系,绘制了动态再结晶图和热加工图.结果表明:在试验变形条件范围内,其真应力-真应变曲线呈双峰特征;钢中发生了明显的动态再结晶,且再结晶类型属于连续动态再结晶.T91钢的热变形激活能为484 kJ.mol-1,利用加工图确定了热变形的流变失稳区,结合力学性能,可以优先选择的变形温度为1200~1 250℃,应变速率不高于0.1 s-1.  相似文献   

16.
采用热力模拟试验机Gleeble-3500对一种铸态含氮M2高速钢在0.01~1.0s-1及1000~1100℃条件下进行热压缩变形,获得了铸态含氮M2高速钢的流变曲线并分析了变形后的显微组织特性。实验结果表明,铸态含氮M2高速钢热变形过程中的能量消耗效率随应变速率的升高而降低,流变失稳区随应变量的增加向低应变速率和低温区域转变,热变形激活能为588.733kJ/mol,同时得到了其热变形方程和热加工图,获得热加工最佳工艺窗口为0.01~1.0 s-1和1 050~1 100℃。  相似文献   

17.
 利用Gleeble3800热模拟试验机研究了在温度870~970℃和应变速率0.001~10s-1范围内,近β钛合金Ti-7333 β锻热变形的组织演化规律及动态再结晶行为.实验结果表明,Ti-7333钛合金在温度较高、应变速率较低的情况下变形时,表现出典型的动态再结晶行为,动态再结晶晶粒尺寸和再结晶体积分数均随变形温度升高和变形速率降低而增大,而应变速率对再结晶晶粒尺寸的影响较显著.在变形速率较高(>0.1s-1)且变形温度较低(<870℃)时,晶粒严重变形拉长,但动态再结晶将很难发生.因子Z决定着动态再结晶晶粒尺寸,二者之间为幂指数关系.通过回归分析方法得出动态再结晶晶粒尺寸的数学表达式为:lnDr=8.50949-0.31411lnZ.采用该表达式可以对一定变形条件的动态再结晶晶粒尺寸进行精确预测,从而为Ti-7333钛合金热变形条件下的组织控制提供可靠依据.不适当的热变形工艺会造成组织粗大或者不均匀,进而使材料性能恶化.因此,应该从材料组织均匀性和晶粒细化角度选择最佳的热变形参数.  相似文献   

18.
对一种8%Cr冷轧辊用钢在950~1200℃以0.1~10s-1的变形速率进行热压缩变形,通过流变曲线分析、动力学分析及热加工图技术等方法表征其热变形时的力学行为,并对变形后的显微组织进行观察。结果表明:Cr8N钢的加工硬化率和流变应力随着变形温度的升高和应变速率的降低而降低,功率耗散百分数随着Z参数的增大而降低;上述变形条件下Cr8N钢的热变形激活能为542kJ/mol,加工硬化指数为5.25;获得了该钢的热变形方程以及Z参数和峰值应力间的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号