首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper I will probe into Herman Boerhaave's (1668–1738) appropriation of Isaac Newton's natural philosophy. It will be shown that Newton's work served multiple purposes in Boerhaave's oeuvre, for he appropriated Newton's work differently in different contexts and in different episodes in his career. Three important episodes in, and contexts of, Boerhaave's appropriation of Newton's natural philosophical ideas and methods will be considered: 1710–11, the time of his often neglected lectures on the place of physics in medicine; 1715, when he delivered his most famous rectorial address; and, finally, 1731/2, in publishing his Elementa chemiae. Along the way, I will spell out the implications of Boerhaave's case for our understanding of the reception, or use, of Newton's ideas more generally.  相似文献   

2.
The life and career of Lorenz Spengler (1720–1807) provides evidence to support the view that the eighteenth century was a period when there was a fruitful interrelationship between the arts, crafts, and sciences in the courts and capitals of Europe. Spengler was trained as a turner, and was appointed teacher of ornamental turning to the Danish royal family and turner of the court in 1745. Even in the early years of his artistic career Spengler was interested in electricity and its role in healing, and he became an avid collector of shells and naturalia. Over the years, Spengler's interests turned more to the natural sciences, and in 1771 he was appointed director of the King's Kunstkammer. Only by considering both aspects of Spengler's career can his scientific activities be placed in their proper historical context.  相似文献   

3.
4.
This article aims to reveal the moral and theological dimensions of William Whewell's philosophy of science. It suggests that, in addition to an internalist account of Whewell's method and epistemology, there is a need to view his philosophy of science (and knowledge) within the intellectual context constituted by the assumptions of natural theology. It argues that writers of natural theology saw man's ability to know the world as an indication of his special place in nature, and that epistemological theories were therefore invested with moral and theological significance. Whewell's work is interpreted as an attempt to dissociate natural science from Utilitarianism and empiricist philosophy: he sought to promote a philosophy of science which guaranteed the principles of natural theology and the values of Christianity. But the idealist epistemology which he proposed was criticized by both scientists and theologians. In 1853 (in his book Of the plurality of worlds), again within the framework of natural theology, Whewell attempted to justify this epistemology by affirming the metaphysics of a Christian Platonism. From this position, Whewell defended natural theology against the metaphysical scepticism of both Henry Mansel and the positivists.  相似文献   

5.
Books received     
R. P. de Lamanon was trained in theology and philosophy, but he chose the career of a self-taught geologist/naturalist, later adding experimental physics to his skills. Recommended by Condorcet, Secretary to the Académie Royale des Sciences, for the post of ‘Naturaliste’ on La Pérouse's expedition, he carried out delicate measurements at sea requested by the Académie and made two important discoveries: the barometric tide at the equator, and the variation of magnetic intensity with latitude. Killed by natives of Samoa in 1787, his reports were long delayed in publication, inadequately presented, and some even lost. Except for brief recognition by von Humboldt many years later, Lamanon's pioneering measurements have been largely ignored or forgotten. This paper revives his memory.  相似文献   

6.
7.
8.
I reappraise in detail Hertz's cathode ray experiments. I show that, contrary to Buchwald's (1995) evaluation, the core experiment establishing the electrostatic properties of the rays was successfully replicated by Perrin (probably) and Thomson (certainly). Buchwald's discussion of ‘current purification’ is shown to be a red herring. My investigation of the origin of Buchwald's misinterpretation of this episode reveals that he was led astray by a focus on what Hertz ‘could do’—his experimental resources. I argue that one should focus instead on what Hertz wanted to achieve—his experimental goals. Focusing on these goals, I find that his explicit and implicit requirements for a successful investigation of the rays’ properties are met by Perrin and Thomson. Thus, even by Hertz's standards, they did indeed replicate his experiment.  相似文献   

9.
This paper investigates the relationship between Helmholtz's formulation of the principle of the conservation of force and the two principles well known in rational mechanics as the principle of vis viva and the principle of the conservation of vis viva. An examination of the relevant literature from Leibniz to Duhamel reveals both Helmholtz's indebtedness to that tradition and his creative refashioning of it as he endeavoured to craft an argument that would both prohibit the construction of a perpetuum mobile and the efficacy of a supposed vital force and demonstrate the necessity of an ontology of mass points subject to attractive and repulsive central forces depending solely on distance.  相似文献   

10.
The young Hermann Helmholtz, in an 1838 letter home, declared that he always appreciated music much more when he played it for himself. Though a frequent concert-goer, and celebrated for his highly influential 1863 work on the physiological basis of music theory, Die Lehre von den Tonempfindungen, it is likely that Helmholtz's enduring engagement with music began with his initial, personal experience of playing music for himself. I develop this idea, shifting the discussion of Helmholtz's work on sound sensation back to its origins, and examine the role of his material interaction with musical instruments and music itself. In his sound sensation studies, Helmholtz understood sound as an external, physical object. But Helmholtz also conceived of sound in musical terms. Further, Helmholtz's particular musical tastes as well as his deeply personal interaction with musical instruments allowed him to reconcile his conception of sound as physical object with his conception of sound as music. Helmholtz's physiological theory of sound sensation was both the product of and constitutive of how he heard and created sound. I argue that Helmholtz himself was the embodied reconciliation of his physiological theory of sound sensation and his belief that musical aesthetics were historically and culturally contingent.  相似文献   

11.
The mathematical works of the French philosopher Charles de Bovelles (c. 1479–1566) have received little attention from historians of scientific thought. At the University of Paris, Bovelles studied under Jacques Lefèvre d'Étaples, sharing with him a high regard for the Christian Neoplatonic philosophy of Nicholas of Cusa. One aspect of Cusanus's philosophy (described in his major work, On Learned Ignorance) was particularly favoured by Lefèvre and Bovelles: the use of geometrical symbolism to provide mathematical guidance to the divine. While Lefèvre was preparing an edition of Cusanus's works (Paris, 1514), Bovelles wrote a treatise of his own, in which the geometry of the five polyhedra was used to provide an approach to the mystery of the Trinity. Seen in the context of Renaissance syncretism of Platonism and Christianity, Bovelles's treatise adds a theological layer of interpretation to the literal meaning of the polyhedral physics described by Plato in the Timaeus. In so doing, it contributes to the discussion of a problem that was later to concern several Renaissance philosophers and cosmologists, including, at the end of the century, Johannes Kepler.  相似文献   

12.
13.
The publication in 1906 of Alexander Smith's Introduction to general inorganic chemistry inaugurated a decisive change in chemical pedagogy in the US, the effects of which are still evident. The nature and extent of Smith's innovations are described through a comparison of his text to its source material and contemporaries. His authoritative command of and whole-hearted commitment to the intellectual framework of Ionist physical chemistry set his text apart from its American competitors, while his efforts to make the tools of physical chemistry immediately useful to his readers distinguished it from its most immediate source material, Wilhelm Ostwald's Grundlinien der anorganischen Chemie. Smith's curricular innovations in chemistry were a practical expression of his radically restrictive view of the social role of collegiate education, which he conceived as solely of use for its ability to prepare students for professional life. During the fifteen years prior to the publication of his groundbreaking textbook, Smith underwent two critical, formative experiences. First, he retreated intellectually from the structural organic chemistry in which he was trained, ultimately adopting a professional identity as a physical inorganic chemist. His involvement in the controversy regarding the structure of 1,3-diketones reveals much about his reasons for eventually abandoning organic chemistry. Second, he served the National Education Association as chairman of the Sub-committee on College Entrance Requirements in Chemistry, in the process making a close study of the ends and methods of secondary and collegiate education. These experiences made him unique among proponents of physical chemistry in the US, and help account for the unique nature of his contributions to the development of the chemical professions.  相似文献   

14.
In this paper I provide a detailed account of eighteenth-century engineer John Smeaton's experimental methods, with the aim of bringing our understanding of his work into line with recent research in the history and philosophy of science. Starting from his use of the technique of parameter variation, I identify three distinct methodological aims in the research he carried out on waterwheels, windmills and hydraulic mortars. These aims are: optimisation, hypothesis testing and maxim generation. The main claim of this paper is that Smeaton did more than merely improve engineering methods by systematising earlier artisanal approaches, which is the classic view of Smeaton's method developed by historians of technology in the 1990s. I argue instead that his approach bridged the divide between science and technology, by integrating both hypothesis testing and exploratory experimentation. This is borne out, in particular, by the way that Smeaton emphasised the exploratory side of the work he published in the Philosophical Transactions, in contrast to his account of the construction of the Eddystone lighthouse, which was aimed at a broader, non-specialist public. I contribute to recent research on exploratory experimentation by showing – in line with other work on this topic – that exploratory experimentation is not incompatible with hypothesis testing. This new perspective on Smeaton's method will hopefully lead to further research and new insights into the relation between science and technology at the start of the Industrial Revolution.  相似文献   

15.
The paper investigates Kant's pre-critical views on the use of analytic and synthetic methods in Newtonian science and in philosophical reasoning. In his 1755/56 writings, Kant made use of two variants of the analytic method, i.e., conceptual analysis in a Cartesian (or Leibnizean) sense, and analysis of the phenomena in a Newtonian sense. His Prize Essay (1764) defends Newton's analytic method of physics as appropriate for philosophy, in contradistinction to the synthetic method of mathematics. A closer look, however, shows that Kant does not identify Newton's method with conceptual analysis, but just suggests a methodological analogy between both methods. Kant’s 1768 paper on incongruent counterparts also fits in with his pre-critical use of conceptual analysis. Here, Kant criticizes Leibniz’ relational concept of space, arguing that it is incompatible with the phenomenon of chiral objects. Since this result was in conflict with his pre-critical views about space, Kant abandoned the analytic method of philosophy in favour of his critical method. The paper closes by comparing Kant's pre-critical analytic method and the way in which he once again took up the methodological analogy between Newtonian science and metaphysics, in the preface B to the Critique of Pure Reason, in the context of his thought experiment of pure reason.  相似文献   

16.
Efforts to trace the influence of fin de siècle neo-Kantianism on early 20th Century philosophy of science have led scholars to recognize the powerful influence on Moritz Schlick of Hermann von Helmholtz, the doyen of 19th Century physics and a leader of the zur?ck zu Kant movement. But Michael Friedman thinks that Schlick misunderstood Helmholtz' signature philosophical doctrine, the sign-theory of perception. Indeed, Friedman has argued that Schlick transformed Helmholtz' Kantian view of spatial intuition into an empiricist version of the causal theory of perception. However, it will be argued that, despite the key role the sign-theory played in his epistemology, Schlick thought the Kantianism in Helmholtz' thought was deeply flawed, rendered obsolete by philosophical insights which emerged from recent scientific developments. So even though Schlick embraced the sign-theory, he rejected Helmholtz' ideas about spatial intuition. In fact, like his teacher, Max Planck, Schlick generalized the sign-theory into a form of structural realism. At the same time, Schlick borrowed the method of concept-formation developed by the formalist mathematicians, Moritz Pasch and David Hilbert, and combined it with the conventionalism of Henri Poincaré. Then, to link formally defined concepts with experience, Schlick's introduced his ‘method of coincidences’, similar to the ‘point-coincidences’ featured in Einstein's physics. The result was an original scientific philosophy, which owed much to contemporary scientific thinkers, but little to Kant or Kantianism.  相似文献   

17.
This study proposes an explanation for the choice of topics Galileo addressed in Day 1 of his 1638 Two New Sciences, a section of the work which has long puzzled historians of science. I argue that Galileo’s agenda in Day 1, that is the topics he discusses and the questions he poses, was shaped by contemporary teaching commentaries on Books 3 through 8 of Aristotle’s Physics. Building on the insights and approach of theorists of reader reception, I confirm this interpretation by examining the response of professors of natural philosophy at the Jesuit Collegio Romano to Galileo’s text.  相似文献   

18.
In early 1925, Wolfgang Pauli (1900–1958) published the paper for which he is now most famous and for which he received the Nobel Prize in 1945. The paper detailed what we now know as his “exclusion principle.” This essay situates the work leading up to Pauli's principle within the traditions of the “Sommerfeld School,” led by Munich University's renowned theorist and teacher, Arnold Sommerfeld (1868–1951). Offering a substantial corrective to previous accounts of the birth of quantum mechanics, which have tended to sideline Sommerfeld's work, it is suggested here that both the method and the content of Pauli's paper drew substantially on the work of the Sommerfeld School in the early 1920s. Part One describes Sommerfeld's turn away from a faith in the power of model-based (modellmässig) methods in his early career towards the use of a more phenomenological emphasis on empirical regularities (Gesetzmässigkeiten) during precisely the period that both Pauli and Werner Heisenberg (1901–1976), among others, were his students. Part two delineates the importance of Sommerfeld's phenomenology to Pauli's methods in the exclusion principle paper, a paper that also eschewed modellmässig approaches in favour of a stress on Gesetzmässigkeiten. In terms of content, a focus on Sommerfeld's work reveals the roots of Pauli's understanding of the fundamental Zweideutigkeit (ambiguity) involving the quantum number of electrons within the atom. The conclusion points to the significance of these results to an improved historical understanding of the origin of aspects of Heisenberg's 1925 paper on the “Quantum-theoretical Reformulation (Umdeutung) of Kinematical and Mechanical Relations.”  相似文献   

19.
20.
It is well known that Hooke's wave theory of light, set forth in his Micrographia of 1665, is viewed as a step towards Huygens's famous theory of light. This view depends mostly on some short remarks given by Huygens in his Traité de la Lumi`ere (1690) and the earlier Projet du Contenu de la Dioptrique (1673). Huygens's personal copy of Micrographia was believed to be lost until found at Braunschweig (Brunswick) University Library by the author three years ago. It is annotated at Observ. IX (pp. 47–67) only, where Hooke deals with his wave theory of light and colours. This article provides a short review of Hooke's theory, and an interpretation of Huygens's annotations, which show clearly the first steps towards the opinions he was to express in his Traité de la lumi`ere, particularly methodological ones. Furthermore, a short comparison is here drawn with Huygens's annotations in his copy of Ango's L'optique divisée en trois livres, which show similar patterns of reasoning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号