首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the introduction of Liebig's ideas on agricultural chemistry into the Netherlands. The aversion to Liebig held by the Utrecht professor G. J. Mulder hindered the direct influence that might have been borne by Liebig's own writings; the introduction was made principally by means of Dutch translations of the text-books of the Scottish agricultural chemist J. F. W. Johnston, who generally followed Liebig's ideas.  相似文献   

2.
SUMMARY

Eighteenth-century scientific translation was not just a linguistic or intellectual affair. It included numerous material aspects requiring a social organization to marshal the indispensable human and non-human actors. Paratexts and actors' correspondences provide a good observatory to get information about aspects such as shipments and routes, processes of translation and language acquisition (dictionaries, grammars and other helpful materials, such as translated works in both languages), texts acquisition and dissemination (including author's additions and corrections, oral presentations in academic meetings and announcements of forthcoming translations).

The nature of scientific translation changed in France during the second half of the eighteenth century. Beside solitary translators, it also happened to become a collective enterprise, dedicated to providing abridgements (Collection académique, 1755–79) or enriching the learned journals with full translations of the most recent foreign texts (Guyton de Morveau's ‘Bureau de traduction de Dijon’, devoted to chemistry and mineralogy, 1781–90). That new trend clearly had a decisive influence on the nature of the scientific press itself. A way to set up science as a social activity in the provincial capital of Dijon, translation required a local and international network for acquiring the linguistic and scientific expertise, along with the original texts, as quickly as possible. Laboratory results and mineralogical observations were used to compare material facts (colour, odour, shape of crystals, etc.) with those described in the original text. By providing a double kind of validation – with both the experiments and the translations – the laboratory thus happened to play a major role in translation.  相似文献   

3.
SUMMARY

In 1803, the most prominent Japanese astronomer of his time, Takahashi Yoshitoki, received a newly imported Dutch translation of J. J. Lalande's ‘Astronomie’. He could not read Dutch, yet he dedicated almost a year to a close examination of this massive work, taking notes and contemplating his own astronomical practices. How did he read a book he could not read? Following the clues Yoshitoki left in his notes, we discover that he found meanings not only in words, but also in what are often taken for granted or considered to be auxiliary tools for data manipulation, such as symbols, units, tables, and diagrams. His rendering of these non-verbal textual elements into a familiar format was crucial for Yoshitoki's reading, and constituted the initial step in the process of integrating Lalande's astronomy into Japanese astronomical practices, and the subsequent translation of the text into Japanese.  相似文献   

4.
A new look at E.G. Björling and the Cauchy sum theorem   总被引:4,自引:0,他引:4  
We give a new account of Björling’s contribution to uniform convergence in connection with Cauchy’s theorem on the continuity of an infinite series. Moreover, we give a complete translation from Swedish into English of Björling’s 1846 proof of the theorem. Our intention is also to discuss Björling’s convergence conditions in view of Grattan-Guinness’ distinction between history and heritage. In connection to Björling’s convergence theory we discuss the interpretation of Cauchy’s infinitesimals.  相似文献   

5.
In the late 1720s, Daniel Turner and James Blondel engaged in a pamphlet dispute over the power of the maternal imagination. Turner accepted the long-standing belief that a pregnant woman's imagination could be transferred to her unborn child, imprinting the foetus with various marks and deformities. Blondel sought to refute this view on rational and anatomical grounds. Two issues repeatedly received these authors' attention: the identity of imagination, and its power in pregnant women; and the process of generation and foetal development. In their discussions of these issues, differences between the authors' acceptance of general medical theories and philosophies became apparent. Blondel invoked Newtonian matter theory, experimental philosophy, and iatro-mechanism, while Turner adhered more to the authority of the Ancients and advocated a more direct role for the Creator as an alternative to mechanism in explaining natural phenomena. Additionally, the authors held differing views of what they regarded as experience. The widespread contemporary interest in their dispute suggests that Turner and Blondel raised the phenomenon of the maternal imagination from an issue of folk belief to a concern of eighteenth-century medicine.  相似文献   

6.
The London Institution, established in the City of London in 1807, was devoted, as its full title proclaimed, to the 'advancement of Literature and the Diffusion of Useful Knowledge'. With its extensive lecture programme, splendid reference library, reading rooms, laboratory and other amenities, it provided for its members a scientific and cultural centre, modelled on the highly successful and fashionable Royal Institution in London's West End. Among its scientific activities, chemistry long maintained a leading role, in terms of both the sheer volume and variety of its presentations, and the high standing of its lecturers; they included Faraday, Playfair, Hofmann, Roscoe, Odling, Norman Lockyer, Meldola, and Sir William Ramsay, as well as other visiting lecturers, specially selected for their ability to present their subject in an interesting and attractive fashion to a wider lay public. The laboratory of the Institution, although limited in size and facilities, was the scene of instruction in practical chemistry, and between 1863 and 1884 attained the reputation of a significant centre of chemical research during the successive tenure of the professorship in chemistry by J. A. Wanklyn and H. E. Armstrong. Their publications, appearing under the device 'From the Laboratory of the London Institution', were a frequent feature of the leading chemical periodicals. Thus, within its many-sided activities, the Institution promoted significantly the public appreciation of the function of chemistry, as a contributor both to pure knowledge, and to technical and economic progress. It achieved this in an environment of influential City merchants, manufacturers and financiers and doubtless led to beneficient, if unrecorded, consequences. It was only towards the close of the nineteenth century, when the universities had become increasingly concerned with the systematic study of the discipline, that chemistry lost its direct impact in the London Institution, but continued to maintain a presence within its cultural framework.  相似文献   

7.
8.
9.
Hugo de Vries claimed that he had discovered Mendel's laws before he found Mendel's paper. De Vries's first ratios, published in 1897, for the second generation of hybrids (F2) were 2/3:1/3 and 80%:20%. By 1900, both of these ratios had become 3:1. These changing ratios suggest that as late as 1897 de Vries had not discovered the laws, although he asserted, from 1900 on, that he had found the laws in 1896. An Appendix details de Vries's Mendelian experiments as described in the original edition (1903) of volume two of Die Mutationstheorie, but omitted entirely from the English translation (1910).  相似文献   

10.
This paper discusses the emergence of new medical experimental specialties at the Medical School of Surgery (Escola Médico-Cirúrgica) and the Faculty of Medicine of Lisbon University (Faculdade de Medicina da Universidade de Lisboa) between 1897 and 1946, as a result of the activities of Marck Athias's (1875–1946) histophysiology research school. In 1897, Marck Athias, a Portuguese physician who had graduated from the Faculty of Medicine in Paris, founded a research school in Lisbon along the lines of Michael Foster's physiology research school in England and Franz Hofmeister's physiological chemistry school in Germany. His research programme was highly innovative in Portugal. Not only did it bring together many disciples and co-workers, but it branched out and created new medical specialties within Portuguese medical science. These new disciplinary areas grew out of the study of the histology of the nervous system but eventually expanded into normal and pathological histophysiology, physiological chemistry and experimental endocrinology. The esprit de corps that existed between research school members ensured the school's success and influence in various fields social and political as well as scientific. Athias's school was strongly influenced by positivist ideals and promoted a teaching and research style that sought inspiration in Humboldt's university model, thus helping to bring about a change in the dominant scientific ethos and to modernize scientific research in Portugal during the first half of the twentieth century.  相似文献   

11.
12.
A letter written by Christiaan Huygens to David Gregory (19 January 1694) is published here for the first time. After an introduction about the contacts between the two correspondents, an annotated English translation of the letter is given. The letter forms part of the wider correspondence about the ‘new calculus’, in which L'Hospital and Leibniz also participated, and gives some new evidence about Huygens's ambivalent attitude towards the new developments. Therefore, two mathematical passages in the letter are discussed separately. An appendix contains the original Latin text.  相似文献   

13.
We present an analysis, and first full English translation, of a paper by Kant entitled ‘Über die Vulcane im Monde’ (1785). Kant became interested in the question of whether the mountains of the Moon were extinct volcanoes. Stimulated by the work of Herschel, Aepinus, and others, he considered the appearance of the Moon's surface and the possibility of lunar vulcanism. From this, he was led to consider the structures of mountain ranges on the Earth, which he decided were non-volcanic in origin, being produced by eruptions of vapours from the interior of the Earth soon after it formed from an original ‘chaos’. Kant developed his ideas in such a way as to yield a characteristic eighteenth-century ‘theory of the Earth’. We argue that the empirical base of his theory was provided by knowledge of the mountain ranges of Bohemia and Moravia. Analogies based on observations of the Moon further assisted in the construction of the theory. But the reasoning ran in two directions: what was seen on the Moon was construed in terms of what Kant knew of the Earth's topography; and the Earth's topography was presumed to be analogous to that of the Moon, for both the Earth and the Moon (and indeed all heavenly bodies) supposedly had essentially similar origins. Kant's ideas of 1785 are related to his earlier writings of 1754, 1755, and 1756, and also to the lectures on physical geography that he presented at Königsberg.  相似文献   

14.
We present a translation of Poincaré's hitherto untranslated 1912 essay together with a brief introduction describing the essay's contemporary interest, both for Poincaré scholarship and for the history and philosophy of atomism. In the introduction we distinguish two easily conflated strands in Poincaré's thinking about atomism, one focused on the possibility of deciding the atomic hypothesis, the other focused on the question whether it can ever be determined that the analysis of matter has a finite bound. We show that Poincaré admitted the decisiveness of Perrin's investigations for the existence of atoms; he did not, however, anticipate the kind of resolution of which the second question is susceptible in light of recent developments.  相似文献   

15.
In response to Maarten Van Dyck’s commentary, I present a translation of Vailati’s original paper with a short introductory note.  相似文献   

16.
Émilie Du Châtelet is well known for her French translation of Newton's Philosophiae Naturalis Principia Mathematica. It is the first and only French translation of Newton's magnum opus. The complete work appeared in 1759 under the title Principes mathématiques de la philosophie naturelle, par feue Madame la Marquise Du Chastellet. Before translating Newton's Principia, Du Châtelet worked on her Institutions de physique. In this book she defended the Leibnizian concept of living forces – vis viva. This paper argues that both of these works were part of a critical transformation and consolidation of post-Newtonian mechanics in the early 18th century, beyond Newton and Leibniz. This will be shown by comparing Du Châtelet's translation of Newton's axioms with her own formulations of the laws of motion in light of Thomas Le Seur's and François Jacquier's Geneva edition which holds a special place among the several editions of the Principia that appeared in the early 18th century.  相似文献   

17.
ABSTRACT

Eighteenth-century events, replete with Dickensian dualities, brought two Enlightenment families to America. Pierre-Samuel du Pont and Joseph Priestley contemplated relocating their families decades before immigrating. After arriving, they discovered deficiencies in education and chemistry. Their experiences were indicative of the challenges in transmitting transatlantic chemistry. The Priestleys were primed to found an American chemical legacy. Science connected Priestley to British manufacturers, Continental chemists, and American statesmen. Priestley's marriage into the Wilkinson ironmaster dynasty, and Lunar Society membership, helped his sons apprentice, and befriend manufacturer-chemist Thomas Cooper. However, ideological persecution forced them from England. Priestley's plans for his sons to inherit Wilkinson's ironworks evaporated; in America, efforts to establish manufactories, colonies, farms, and a college miscarried. Cooper taught college chemistry, but his materialism provoked dismissals. The Du Ponts were unlikely founders of an industrial-chemistry empire. Du Pont's philosophy promulgated that agriculture, not industry, produced wealth. Eleuthère-Irénée apprenticed in France's gunpowder administration, however, plans for his succession died and director Antoine Lavoisier, a family friend, was executed. E.-I. and Du Pont's arrest precipitated relocation to America. Du Pont's utopian colony and schemes proved unrealistic. Nevertheless, E.-I.'s gunpowder manufactory—utilizing transatlantic contacts and privileged knowledge of advanced French chemistry—succeeded through practical application.  相似文献   

18.
In 1965, John A. Pope presented a paper entitled 'Two-Dimensional Chart of Quantum Chemistry' to illustrate the inverse relationship between the sophistication of computational methods and the size of molecules under study. This chart, later called the 'hyperbola of quantum chemistry', succinctly summarized the growing tension between the proponents of two different approaches to computation–the ab initio method and semiempirical method–in the early years of electronic digital computers. Examining the development of quantum chemistry after World War II, I focus on the role of computers in shaping disciplinary identity. The availability of high-speed computers in the early 1950s attracted much attention from quantum chemists, and their community took shape through a series of conferences and personal networking. However, this emerging community soon encountered the problem of communication between groups that differed in the degree of reliance they placed on computers. I show the complexity of interactions between computing technology and a scientific discipline, in terms of both forming and splitting the community of quantum chemistry.  相似文献   

19.
In this article, we aim at clarifying the role played by Fizeau’s 1851 experiment, both in the context of discovery and in the context of justification of the special theory of relativity. In 1907 Laue proved that Fresnel's formula was a consequence of the relativistic composition of velocities; since then, Einstein regarded Fizeau's experiment as confirmatory evidence for his theory, and even as a crucial experiment in favor of the relativistic addition of velocities. On the other hand, in the 1920's Einstein stated that this experiment was decisive in the path that led him to the discovery of his theory before 1905, but he did not explain why. We survey all the available evidence on this subject and conclude that the original ether-drag experiment was reinterpreted within a new conceptual framework in which the meaning of the very concept of velocity undergoes a radical change.  相似文献   

20.
SUMMARY

This article follows the publication strategies of the Swedish chemist Jöns Jacob Berzelius (1779–1848). It focuses on the role of language and translation in Berzelius' efforts to strengthen his own reputation, and that of Swedish science. As an author and editor, Berzelius encouraged the translation of his own works into several languages, while endeavouring to preserve the status of Swedish as a language of scientific publication in the face of French, and increasingly German and English, dominance. Reforming the Transactions of the Royal Swedish Academy of Sciences and launching several new scientific periodicals, Berzelius also attempted to influence the publication practices in other countries.

Recent scholarship on the history of scientific publication has drawn attention to the practical difficulties of determining and getting hold of the relevant publications in one's field, the ‘malleability’ of the journal medium, and the common practice of reprinting and summarising papers published elsewhere. Berzelius’ publication strategies highlight translation – time-consuming, unreliable and problematic in terms of authorisation and ownership – as one aspect of the wider problem of communicating across national and linguistic boundaries. Berzelius' struggles with the practicalities of communicating across borders in times of war, the choice of language and its consequences, and national standards of publication, demonstrate the importance of a transnational perspective on the history of scientific publication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号