首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Tin oxide (SnO2) nanoparticles were cost-effectively synthesized using nontoxic chemicals and green tea (Camellia sinensis) extract via a green synthesis method.The structural properties of the obtained nanoparticles were studied using X-ray diffraction,which indicated that the crystallite size was less than 20 nm.The particle size and morphology of the nanoparticles were analyzed using scanning electron microscopy and transmission electron microscopy.The morphological analysis revealed agglomerated spherical nanoparticles with sizes varying from 5 to 30 nm.The optical properties of the nanoparticles' band gap were characterized using diffuse reflectance spectroscopy.The band gap was found to decrease with increasing annealing temperature.The O vacancy defects were analyzed using photoluminescence spectroscopy.The increase in the crystallite size,decreasing band gap,and the increasing intensities of the UV and visible emission peaks indicated that the green-synthesized SnO2 may play future important roles in catalysis and optoelectronic devices.  相似文献   

2.
Tin oxide(SnO_2) nanoparticles were cost-effectively synthesized using nontoxic chemicals and green tea(Camellia sinensis) extract via a green synthesis method. The structural properties of the obtained nanoparticles were studied using X-ray diffraction, which indicated that the crystallite size was less than 20 nm. The particle size and morphology of the nanoparticles were analyzed using scanning electron microscopy and transmission electron microscopy. The morphological analysis revealed agglomerated spherical nanoparticles with sizes varying from 5 to 30 nm. The optical properties of the nanoparticles' band gap were characterized using diffuse reflectance spectroscopy. The band gap was found to decrease with increasing annealing temperature. The O vacancy defects were analyzed using photoluminescence spectroscopy. The increase in the crystallite size, decreasing band gap, and the increasing intensities of the UV and visible emission peaks indicated that the green-synthesized SnO_2 may play future important roles in catalysis and optoelectronic devices.  相似文献   

3.
Semiconductor SnO2 nanotube arrays were fabricated by sol-gel method based on highly ordered nanoporous anodic alumina membrane. Their microstructures were characterized by scanning electron microscopy,transmission electron microscopy, selective electron diffraction spectroscopy and X-ray diffraction. Results indicated that SnO2 nanotubes have a thickness of about 20-30 nm,and a diameter of about 100-200 nm. The length of the nanotubes is about 1 μn, XRD and SEDS indicated that these SnO2 nanotubes are polycrystalline.  相似文献   

4.
Silica coated(30 wt%) cobalt zinc ferrite(Co1 xZnxFe2O4, x?0, 0.2, 0.3, 0.4, 0.5 and 1) nanoparticles were synthesized by using sol–gel method. Silica acts as a spacer among the nanoparticles to avoid the agglomeration. X-ray diffraction(XRD) reveals the cubic spinel ferrite structure of nanoparticles with crystallite size in the range 37–45 nm. Fourier transform infrared(FTIR) spectroscopy confirmed the formation of spinel ferrite and SiO2. Scanning electron microscopy(SEM) images show that the nanoparticles are nearly spherical and non-agglomerated due to presence of non-magnetic SiO2 surface coating. All these measurements signify that the structural and magnetic properties of Co1 xZnxFe2O4 ferrite nanoparticles strongly depend on Zn concentration and nanoparticle average crystallite size in different Zn concentration regimes.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

5.
This work is devoted to the synthesis and characterization of yttrium-doped SrBi2Nb2O9 ceramics prepared by three methods: solid state reaction, co-precipitation, and hydrothermal. Multiple characterizations, specifically scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR), were used to validate the structural feature. The crystallite size was estimated by Scherrer’s formula and the Williamson–Hall plot. The effect of the process on the band intensities of the FTIR spectra was investigated. The crystallite size and microstructure of ceramics prepared from different synthesis processes were strongly influenced by the sinterability. SEM images revealed nanograin ceramics for materials prepared by co-precipitation and hydrothermal methods and micrograin ceramics prepared by the solid state method. The synthesized compounds underwent phase transitions at 480–465°C. The dielectric and electrical properties of these Y-doped SrBi2Nb2O9 ceramics appear to be dependent on the grain size.  相似文献   

6.
Au nanoparticles dispersed NiO composite films were prepared by a chemical solution method. The phase structure, microstructure, surface chemical state, and optical absorption properties of the films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Uv-vis spectrometer. The results indicate that Au particles with the average diameters of 35–42 nm are approximately spherical and disperse in the NiO matrix. The optical absorption peaks due to the surface plasmon resonance of Au particles shift to the shorter wavelength and intensify with the increase of Au content. The bandwidth narrows when the Au content increases from 8.4wt% to 45.2wt%, but widens by further increasing the Au content from 45.2wt% to 60.5wt%. The band gap Eg increases with the increase of Au contents from 8.4wt% to 45.2wt%, but decreases by further increasing the Au content.  相似文献   

7.
ZnO nanoparticles and porous particles were produced by an ultrasonic spray pyrolysis method using a zinc nitrate precursor at various temperatures under air atmosphere. The effects of reaction temperature on the size and morphology of ZnO particles were investigated. The samples were characterized by energy dispersive spectroscopy, X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. ZnO particles were obtained in a hexagonal crystal structure and the crystallite shapes changed from spherical to hexagonal by elevating the reaction temperature. The crystallite size grew by increasing the temperature, in spite of reducing the residence time in the heated zone. ZnO nanoparticles were obtained at the lowest reaction temperature and ZnO porous particles, formed by aggregation of ZnO nanoparticles due to effective sintering, were prepared at higher temperatures. The results showed that the properties of ZnO particles can be controlled by changing the reaction temperature in the ultrasonic spray pyrolysis method.  相似文献   

8.
The well-dispersive yttrium-stabilized cubic zirconia nanoparticles were fabricated via vapor phase hydrolysis process,and the as-synthesized cubic zirconia nanoparticles were characterized by X-ray di...  相似文献   

9.
Superparamagnetic carbon-coated Fe3O4 nanoparticles with high magnetization (85 emu·g-1) and high crystallinity were synthesized using polyethylene glycol-4000 (PEG (4000)) as a carbon source. Fe3O4 water-based bilayer-surfactant-enveloped ferrofluids were subsequently prepared using sodium oleate and PEG (4000) as dispersants. Analyses using X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy indicate that the Fe3O4 nanoparticles with a bilayer surfactant coating retain the inverse spinel-type structure and are successfully coated with sodium oleate and PEG (4000). Transmission electron microscopy, vibrating sample magnetometry, and particle-size analysis results indicate that the coated Fe3O4 nanoparticles also retain the good saturation magnetization of Fe3O4 (79.6 emu·g-1) and that the particle size of the bilayer-surfactant-enveloped Fe3O4 nanoparticles is 42.97 nm, which is substantially smaller than that of the unmodified Fe3O4 nanoparticles (486.2 nm). UV–vis and zeta-potential analyses reveal that the ferrofluids does not agglomerate for 120 h at a concentration of 4 g·L-1, which indicates that the ferrofluids are highly stable.  相似文献   

10.
The Cu2MoS4 nanoparticles were prepared using a relatively simple and convenient solid-phase process, which was applied for the first time. The crystalline structure, morphology, and optical properties of Cu2MoS4 nanoparticles were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and UV-vis spectrophotometry. Cu2MoS4 nanoparticles having a band gap of 1.66 eV exhibits good photocatalytic activity in the degradation of methylene blue, which indicates that this simple process may be critical to facilitate the cheap production of photocatalysts.  相似文献   

11.
Silica nanoparticles have been prepared from tetraethylorthosilicate dissolved in ethanol followed by base-catalyzed condensation.Earlier works reported that at least four parameters,namely concentrati...  相似文献   

12.
InP nanoparticles embedded in SiO2 thin films were prepared by radio-frequency magnetron co-sputtering. We analyzed the structure and growth behavior of the composite films under different preparation conditions. X-ray diffraction and Raman spectroscopy analyses indicate that InP nanoparticles have a polycrystalline structure. The average size of InP nanoparticles is in the range of 3–10 nm. The broadening and red shift of the Raman peaks were observed, which can be interpreted by the phonon confinement model. Optical transmission spectra indicate that the optical absorption edges of the films can be modulated in the visible light range. The marked blue shift of the absorption edge with respect to that of bulk InP is explained by the quantum confinement effect. The theoretical values of the blue shift predicted by the effective mass approximation model are different from the experimental results for the InP-SiO2 system. Analyses indicate that the exciton effective mass of the InP nanoparticles is not constant and is inverse relative to the particles radius, which may be the main reason that results in the discrepancy between the theoretical and the experimental result. We discussed the possible transition of the direct band gap to the indirect band gap for InP nanoparticles embedded in SiO2 thin films.  相似文献   

13.
利用互花米草(SAF)叶提取物采用溶胶-凝胶法合成了ZnO纳米颗粒(Nano-ZnO),采用扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)对其表面形貌、活性基团、晶型结构和光吸收特性进行了表征,分析了ZnO纳米颗粒对孔雀石绿(MG)的光催化降解活性以及对金黄色葡萄球菌的抑菌性能。结果表明:采用互花米草叶提取物绿色合成的ZnO纳米颗粒具有丰富的含氧活性基团、较小的粒径和良好的分散性;经计算Nano-ZnO带隙能为3.09 eV,表明其光吸收利用效率较高;可见光下Nano-ZnO对孔雀石绿(MG)的降解效率达到98.2%;在光催化降解过程中,h+和·O2-是发挥作用的主要活性物种;Nano-ZnO对金黄色葡萄球菌的抑菌率是ZnO的2倍。该研究为互花米草的高值化利用提供了新途径,同时为纳米金属氧化物的制备提供了新方法。  相似文献   

14.
The objective of this study was to establish the dielectric properties of CoFe2O4 nanoparticles with particle sizes that varied from 28.6 to 5.8 nm. CoFe2O4 nanoparticles were synthesized using a chemical coprecipitation method. The particle sizes were calculated accord-ing to the Scherrer formula using X-ray diffraction (XRD) peaks, and the particle size distribution curves were constructed by using field-emission scanning electron microscopy (FESEM) images. The dielectric permittivity and loss tangents of the samples were determined in the frequency range of 1 kHz to 1 MHz and in the temperature range of 300 to 10 K. Both the dielectric permittivity and the loss tangent were found to decrease with increasing frequency and decreasing temperature. For the smallest CoFe2O4 nanoparticle size, the dielectric per-mittivity and loss tangent exhibited their highest and lowest values, respectively. This behavior is very useful for materials used in devices that operate in the microwave or radio frequency ranges.  相似文献   

15.
Quaternary water-in-oil reverse micelles consisting of cetyltrimethylammonium bromide (CTAB), nhexanol, n-heptane and water were prepared and characterized. The optimized reaction conditions were determined, and monodispersed droplets of the reverse micelles were used as microreactors to synthesize CdS nanoparticles. By using transmission electron microscopy (TEM), UV-Vis spectroscopy and fluorescence spectroscopy, the influences of the reverse micelle components on the size, size distribution, morphology, stability and optical properties of CdS nanoparticles were investigated. CdS nanoparticles with narrow size distribution were obtained and the size range is 6–8 nm whenW=24 (W=[water]/[CTAB]), P=5.27 (P=[n-hexanol]/ [CTAB]), [CTAB]=0.2 mol/L, [Cd2+] and [S2-] are 8.45×10−4 mol/L.  相似文献   

16.
Nanocrystalline powders of ZrO2-8mol%SmO1.5(8SmSZ), ZrO2-8mol%GdO1.5 (8GdSZ), and ZrO2-8mol%YO1.5(8YSZ) were prepared by a simple reverse-coprecipitation technique. Differential thermal analysis/thermogravimetry (DTA/TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM) were used to study the phase transformation and crystal growth behavior. The DTA results showed that the ZrO2 freeze-dried precipitates crystallized at 529, 465, and 467℃ in the case of 8SmSZ, 8GdSZ, and 8YSZ, respectively. The XRD and Raman results confirmed the presence of tetragonal ZrO2 when the dried precipitates were calcined in the temperature range from 600 to 1000℃ for 2 h. The crystallite size increased with increasing calcination temperature. The activation energies were calculated as 12.39, 12.45, and 16.59 kJ/mol for 8SmSZ, 8GdSZ, and 8YSZ respectively.  相似文献   

17.
Fe3O4 magnetic nanoparticles were synthesized by the hydrothermal method, and the influences of the surfactant sodium bis(2-ethylhexyl) sulfosuecinate (AOT) on the particles were investigated. The structure, morphology, and magnetic properties of the products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM). It is confirmed that the as-prepared nanoparticles have been modified by using the surfactant during the synthesis process. The amount of the surfactant has an effect on the size, the dispersal, and the magnetic properties of the particles. Besides, the mechanisms of the influences were also discussed.  相似文献   

18.
Highly ordered SnO2/Fe2O3 composite nanowire arrays have been synthesized by electrophoretic deposition method. The morphology and chemical composition of SnO2/Fe2O3 composite nanowire arrays are characterized by SEM, TEM, EDX, XPS, and XRD. The results show that the SnO2/Fe2O3 composite nanowires are about 180 nm in width and tens of microns in length, and they are composed of small nanoparticles of tetraganal SnO2 and rhombohedral α-Fe203 with diameters of 10-15nm. The SnO2/Fe2O3 composite nanowires are formed by a series of chemical reactions.  相似文献   

19.
采用溶胶-凝胶法,在Si(100)衬底上制备了3%Co掺杂CeO2薄膜,研究了不同热处理温度对Ce0.97Co0.03O2薄膜结构和光学性质的影响。X射线衍射(XRD)表明,3%Co掺杂CeO2薄膜为多晶薄膜,且未破坏CeO2原有的结构,随着退火温度的升高,晶粒尺寸逐渐增大。椭偏光谱法研究表明,Ce0.97Co0.03O2薄膜的光学常数(折射率n、消光系数k)随着退火温度增加而增大,光学带隙Eg随退火温度增加而减小,这是薄膜结构随退火温度增加发生变化所致。  相似文献   

20.
The Cu_2MoS_4 nanoparticles were prepared using a relatively simple and convenient solid-phase process, which was applied for the first time. The crystalline structure, morphology, and optical properties of Cu_2MoS_4 nanoparticles were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and UV-vis spectrophotometry. Cu_2MoS_4 nanoparticles having a band gap of 1.66 eV exhibits good photocatalytic activity in the degradation of methylene blue, which indicates that this simple process may be critical to facilitate the cheap production of photocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号