首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 62 毫秒
1.
Metal Sm has been widely used in making Al–Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al–Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant(CVCC) technique was used to measure the conductivity for the Na_3 AlF_6–AlF_3–LiF–MgF_2–Al_2O_3–Sm_2O_3 electrolysis medium in the temperature range from 905 to 1055°C. The temperature(t) and the addition of Al_2O_3(W(Al_2O_3)), Sm_2O_3(W(Sm_2O_3)), and a combination of Al_2O_3 and Sm_2O_3 into the basic fluoride system were examined with respect to their effects on the conductivity(κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature(t) and decreases with the addition of Al_2O_3 or Sm_2O_3 or both. We concluded that the optimal operation conditions for Al–Sm intermediate alloy production in the Na_3 AlF_6–AlF_3–LiF–MgF_2–Al_2O_3–Sm_2O_3 system are W(Al_2O_3) + W(Sm_2O_3) = 3wt%, W(Al_2O_3):W(Sm_2O_3) = 7:3, and a temperature of 965 to 995°C, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.  相似文献   

2.
Erratum to:International Journal of Minerals, Metallurgy and Materials Volume 26, Number 6, June 2019, Page 701https://doi.org/10.1007/s12613-019-1775-z The acknowledgements of this article unfortunately contained a mistake. The grant number of the National Natural  相似文献   

3.
用等温饱和法测定了NiFe2O44,XnFe2O4,XnAl2O4在Na3AlF6-Al2O3熔体中的溶解度,研究了电解质温度、Al2O33浓度和NaF与AlF3的分子比对NiFe2O4溶解度的影响.试验结果表明NiFe2O4组元中Ni和Fe在熔盐中的饱和溶解度分别为0.008 5%和0.070 0%;ZnFe2O4组元中Zn和Fe的饱和溶解度则为0.031 3%和0.070 0%;XnAl2O44组元中Zn的饱和溶解度为0.026 5%;NiFe2O4在铝电解质熔盐中具有较强的抗腐蚀性能,是一种较好的金属陶瓷惰性阳极基体材料;NiFe2O4的溶解过程受离解及离解产物NiO与Fe2Os的化学溶解2个过程的控制,为提高NiFe2O4基陶瓷材料的耐腐蚀性能,宜采用低电解温度、低分子比和高氧化铝浓度等电解条件.  相似文献   

4.
Metal Sm has been widely used in making Al-Sm magnet alloy materials.Conventional distillation technology to produce Sm has the disadvantages of low productivity,high costs,and pollution generation.The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly,with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption.The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055℃.The temperature (t) and the addition of Al2O3 (W(Al2O3)),Sm2O3 (W(Sm2O3)),and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity (κ) and activation energy.The experimental results showed that the molten electrolyte conductivity increases with increasing temperature (t) and decreases with the addition of Al2O3 or Sm2O3 or both.We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3) =3wt%,W(Al2O3)∶ W(Sm2O3) =7∶3,and a temperature of 965 to 995℃,which results in satisfactory conductivity,low fluoride evaporation losses,and low energy consumption.  相似文献   

5.
Al2O3/TiO2/Fe2O3/Yb2O3 composite powder was synthesized via the sol-gel method. The structure, morphology, and radar-absorption properties of the composite powder were characterized by transmission electron microscopy, X-ray diffraction analysis and RF impedance analysis. The results show that two types of particles exist in the composite powder. One is irregular flakes (100-200 nm) and the other is spherical Al2O3 particles (smaller than 80 nm). Electromagnetic wave attenuation is mostly achieved by dielectric loss. The maximum value of the dissipation factor reaches 0.76 (at 15.68 GHz) in the frequency range of 2-18 GHz. The electromagnetic absorption of waves covers 2-18 GHz with the matching thicknesses of 1.5-4.5 mm. The absorption peak shifts to the lower-frequency area with increasing matching thickness. The effective absorption band covers the frequency range of 2.16-9.76 GHz, and the maximum absorption peak reaches -20.18 dB with a matching thickness of 3.5 mm at a frequency of 3.52 GHz.  相似文献   

6.
The superconductive Josephson junction is the key device for superconducting quantum computation. We have fabricated Al/Al2O3/Al tunnel junctions using a double angle evaporation method based on a suspended shadow mask. The Al2O3 junction barrier has been formed by introducing pure oxygen into the chamber during the fabrication process. We have adjusted exposure conditions by changing either the oxygen pressure or the oxidizing time during the formation of tunnel barriers to control the critical current density Jc and the junction specific resistance Rc. Measurements of the leakage in Al/Al2O3/Al tunnel junctions show that the devices are suitable for qubit applications.  相似文献   

7.
In this work, network former SiO2 and network intermediate Al2O3 were introduced into typical low-melting binary compositions CaO·B2O3, CaO·2B2O3, and BaO·B2O3 via an aqueous solid-state suspension milling route. Accordingly, multiple-phase aluminosilicate glass-ceramics were directly obtained via liquid-phase sintering at temperatures below 950℃. On the basis of liquid-phase sintering theory, mineral-phase evolutions and glass-phase formations were systematically investigated in a wide MO-SiO2-Al2O3-B2O3 (M=Ca, Ba) composition range. The results indicate that major mineral phases of the aluminosilicate glass-ceramics are Al20B4O36, CaAl2Si2O8, and BaAl2Si2O8 and that the glass-ceramic materials are characterized by dense microstructures and excellent dielectric properties.  相似文献   

8.
The pore structure of Cr2O3/Al2O3 catalysts and the surface chemical properties of these pores were characterized by positron lifetime and coincidence Doppler broadening (CDB) measurements. Four lifetime components could be resolved from the positron lifetime spectrum, with two long lifetime components and two short lifetime components. The two long lifetimes τ4 and τ3 are attributed to ortho-positronium (o-Ps) annihilation in large pores and microvoids, respectively. With increasing Cr2O3 content, both τ4 and its intensity I4 show sharp decrease, while τ3 and its intensity I3 keep nearly unchanged. The Doppler broadening S parameters also show sharp decrease with increasing Cr2O3 content. Detailed analysis of the CDB spectrum reveals that the parapositronium (p-Ps) intensity also decreases with increasing Cr2O3 content. This indicates that the change of o-Ps lifetime τ4 is due to the chemical quenching by Cr2O3 but not spin-conversion of positronium. The decrease of o-Ps intensity I4 indicates that Cr2O3 also inhibits positronium formation.  相似文献   

9.
Aluminum (Al) 2024 matrix composites reinforced with alumina short fibers (Al2O3sf) and silicon carbide particles (SiCp) as wear-resistant materials were prepared by pressure infiltration in this study. Further, the effect of Al2O3sf on the friction and wear properties of the as-synthesized composites was systematically investigated, and the relationship between volume fraction and wear mechanism was discussed. The results showed that the addition of Al2O3sf, characterized by the ratio of Al2O3sf to SiCp, significantly affected the properties of the composites and resulted in changes in wear mechanisms. When the volume ratio of Al2O3sf to SiCp was increased from 0 to 1, the rate of wear mass loss (Km) and coefficients of friction (COFs) of the composites decreased, and the wear mechanisms were abrasive wear and furrow wear. When the volume ratio was increased from 1 to 3, the COF decreased continuously; however, the Km increased rapidly and the wear mechanism became adhesive wear.  相似文献   

10.
The electro-deoxidation of V2O3 precursors was studied. Experiments were carried out with a two-terminal electrochemical cell, which was comprised of a molten electrolyte of CaCl2 and NaCl with additions of CaO, a cathode of compact V2O3, and a graphite anode under the potential of 3.0 V at 1173 K. The phase constitution and composition as well as the morphology of the samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). 3 g of V2O3 could be converted to vanadium metal powder within the processing time of 8 h. The kinetic pathway was investigated by analyzing the product phase in samples prepared at different reduction stages. CaO added in the reduction path of V2O3 formed the intermediate product CaV2O4.  相似文献   

11.
zirconia-based nanostructured coatings were deposited on AA2024 to improve the corrosion resistance properties. Three different nanostructured coatings, namely, zirconia-benzotriazole, zirconia-alumina-benzotriazole, and zirconia-yttria-benzotriazole, were applied on AA2024 via a sol-gel method using the dip-coating technique. Next, the coatings were annealed at 150℃ after each dipping period. The phases and morphologies of the coatings were investigated using grazing incidence X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). The corrosion properties were evaluated using electrochemical methods, including polarization and electrochemical impedance techniques in 3.5wt% NaCl solution. The obtained results confirm the formation of homogeneous and crack free zirconia-benzotriazole-based nanostructured coatings. The average roughness values for zirconia-benzotriazole, zirconia-alumina-benzotriazole, and zirconia-yttria-benzotriazole nanostructured coatings were 30, 8, and 6 nm, respectively. The presence of alumina as a stabilizer on zirconia coating was found to have a beneficial impact on the stability of the corrosion resistance for different immersion times. In fact, the addition of alumina resulted in the dominance of the healing behavior in competition with the corrosion process of zirconia-benzotriazole nanostructured coating.  相似文献   

12.
We demonstrate a synthesis method to broaden the range of SiO2/Al2O3 ratio (30-100) of high-silica MCM-22 zeolites by prolonging the aging time of the gel before the crystallization. The synthesis conditions such as silica sources, chemical compositions of initial gel and aging time of gel were investigated in detail.High quality MCM-22 products with various morphologies have been synthesized by optimize their synthesis conditions.Our results show that increasing of the aging time can make the gel be homogenization and promote their nucleus formation,which may avoid the formation of impurity phase and thus broaden the range of SiO2/Al2O3 ratio.  相似文献   

13.
In this study, the fabrication of multilayer Al(Zn)–Al2O3 with different volume fractions of Al2O3 was investigated. Al and ZnO powders were milled by a planetary ball mill, after which five-layer functionally graded samples were produced through hot pressing at 580℃ and 90 MPa pressure for 30 min. Formation of reinforcing Al2O3 particles occurred in the aluminum matrix via the aluminothermic reaction. Determination of the ignition temperature of the aluminothermic reaction was accomplished using differential thermal and thermogravimetric analyses. Scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffractometery analyses were utilized to characterize the specimens. The thermal analysis results showed that the ignition temperatures for the aluminothermic reaction of layers with the highest and lowest ZnO contents were 667 and 670℃, respectively. Microstructural observation and chemical analysis confirmed the fabrication of Al(Zn)–Al2O3 functionally graded materials composites with precipitation of additional Zn in the matrix. Moreover, nearly dense functionally graded samples demonstrated minimum and maximum hardness values of HV 75 and HV 130, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号