首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
介绍了一种适用于中厚板双机架轧机负荷分配的优化方法,并采用Visual Basic 6.0软件编制成应用程序。该方法以轧制力和轧制周期为目标函数,采用一维搜索法进行迭代计算,可以得到实用的轧制规程。其优化轧制规程在生产上应用效果良好,提高了生产能力。  相似文献   

2.
通过合理的假设对H型钢变形区进行分区,基于流函数方法确定了各个变形区的速度场,建立了H型钢万能轧制力学模型.在此基础上,使用Powell多参数优化算法优化变形区参数以使变形区的总功率达到最小并最终求得H型钢轧制力能参数.计算中采用高斯积分的方法,使得计算结果更加准确.计算结果表明,腹板和翼缘的延伸率相同时,本文模型计算结果与经过实验数据验证的有限元结果的误差不超过1.53%,当偏离标准工况较大时,通过适当修正,亦可保证本文方法的计算精度.在腿腰延伸比λ=1附近时,模型计算的轧制力与有限元结果变化趋势相同.在合理的力臂系数情况下,两者结果吻合较好.  相似文献   

3.
基于分离腹板和翼缘相互影响的思路建立2种特殊的H型钢万能轧制模型.通过研究不同延伸比和面积比条件下水平辊、立辊轧制力与平板轧制的关系,总结归纳出H型钢万能轧制力计算公式,并用其他规格道次的H型钢轧制力进行对比验证.研究结果表明:在相同的面积比条件下,随着腿腰延伸比λ的增大,水平辊轧制力减小,立辊轧制力增加;随着翼缘或者腹板面积的减小,不同延伸比情况下的水平辊中间位置轧制力和立辊轧制力分别收敛于1个稳定值;该H型钢轧制力计算公式能较好地反映不同工艺参数下轧制力的变化趋势;水平辊轧制力公式计算结果与有限元模型计算结果的最大相对误差为16.7%,与实测值的相对误差为3.4%;立辊轧制力公式计算结果与有限元模型计算结果的最大相对误差为8.7%,与实测值的相对误差为4.4%.  相似文献   

4.
轧制规程的计算是轧机连轧生产工艺的核心内容,是轧机生产能力发挥、产品厚度精度及板形质量的基本保证,因此轧制规程的优化尤为重要。本文根据轧制过程的实际需求,结合多目标优化算法,以总能耗最小和带钢板形良好为目标,建立多目标优化数学模型,并从理论上分析,可以取得较好的优化结果,从而优化轧制规程,提高生产能力。  相似文献   

5.
H型钢因其断面异型,轧制变形时金属流动性大,断面温度分布不均匀使得其断面组织均匀性很难得到控制。在建筑工程中H型钢的广泛应用,使得对产品的形状、尺寸精度和机械性能要求日益严格。在金属的塑性变形过程中,微观组织的演变对金属的机械性能有着很大的影响。为了研究组织对机械性能的影响,对产品的机械性能进行的拉伸实验并对组织性能进行了观测,分析了组织对机械性能的影响。并对轧制规程进行优化。  相似文献   

6.
H型钢轧制过程的计算机仿真   总被引:3,自引:0,他引:3  
为解决H型钢轧制缺陷问题,用塑性有限元软件建立了H型钢的轧制模型,模拟了轧制过程,并用热力耦合法分析了轧件的变形和金属流动情况和腹板的轧制力分布。仿真结果与实测数据基本吻合。  相似文献   

7.
轧制工艺润滑能有效减少轧制力,降低能耗,但是在H型钢轧制过程中引入工艺润滑造成了翼缘宽展不均、腹板偏心等缺陷。针对H型钢工艺润滑生产中遇到的问题,建立了H型钢万能轧制过程的有限元模型,对轧辊各部位不同摩擦分布情况进行了仿真模拟,深入研究了轧制润滑影响H型钢翼缘宽展的机理。通过分析不同工况条件下轧件变形区内的摩擦力分布、金属流动等因素,解释了翼缘宽展的机理并得到了翼缘宽展的规律。分析结果表明,对H型钢腹板进行轧制工艺润滑能有效减少轧制力、降低能耗;在其它工艺参数一定的情况下,翼缘宽展随翼缘及轧辊间的摩擦系数增大而减小,且基本上呈线性关系;在翼缘的二个表面中对内侧的摩擦系数更为敏感。现场工艺润滑方案设计时应充分考虑宽展对润滑轧辊不同位置时的敏感性差异。  相似文献   

8.
按一般方法设计的冷轧窄带钢压下规程,轧制能耗不一定是最小的。本文利用优化的方法得出了冷轧窄带钢轧制能耗最下的压下规程。这对节能有一定的实际意义。本文介绍了所采用的优化方法及数学模型,并对现场采用的压下规程进行了分析和比较。  相似文献   

9.
采用显示动力学有限元软件LS-DYNA,结合生产实际,对H型钢万能轧制进行了仿真计算.在仿真结果的基础上,根据轧制平面内的节点位移矢量分布情况,分析了轧件断面内金属流动规律.仿真结果显示轧件断面内在立辊和平辊压下方向上存在"零位移线",说明在H型钢万能轧制过程中,在立辊和平辊压下方向上轧件内金属流动存在"位移中性面",并伴有翼缘端部金属流动产生"内翻"的情况.  相似文献   

10.
采用三维弹塑性有限元法模拟了不同立辊锥角的H型钢万能轧制过程,分析了立辊锥角大小对翼缘宽展和轧制力的影响。以工业纯铅为材料,采用在试件断面划分网格的方法,在燕山大学H型钢三机架连轧机组上进行了实验研究,验证了数值模拟结果的正确性。  相似文献   

11.
介绍了劈分法轧制H型钢异型坯的特殊孔型系统及工艺,在充分考虑孔型形状和轧辊压下对宽展的影响的基础上,把腿部宽展和腰部宽展分开来计算,并且针对不同孔型和不同道次给出了相应的宽展计算公式,对理论研究和生产实践有重要的参考价值。  相似文献   

12.
针对带钢热连轧双机架粗轧机组的特点,应用综合等负荷函数法进行负荷分配.分配时兼顾水平辊和立辊轧制的影响,在宽度和厚度两个方向进行等负荷函数的交替迭代计算,逐步优化规程,并在外层迭代中设置了机组轧制负荷超限情况下的道次数自动修正.根据上述方法设计规程设定系统软件并结合实例进行计算,随后对计算结果和计算速度进行了分析和校验,同时也对其应用于现场实时过程控制的一些问题提出了解决方案.  相似文献   

13.
采用优化方法对高速线材轧机的孔型系统进行轧制负荷均衡的优化设计,使轧机负荷达到相对均衡,保证正常轧制。该优化设计软件,功能齐全,操作方便,具有与Windows界面一致的可视化操做界面,VB语言AutoCAD结合增强了软件绘图功能,对制定轧制负荷最优的变形制度及孔型参数提供了新的方法。  相似文献   

14.
首钢中厚板轧机过程控制系统   总被引:6,自引:4,他引:6  
针对首钢新建3500mm中厚板轧机,自主设计开发了完整的两级计算机控制系统·在过程控制系统中包括了数据通讯、数据管理、过程跟踪和模型计算等主要功能·数据通讯模块负责过程控制系统和其他系统的数据通讯;数据管理模块负责数据库的读写,为模型计算查询模型参数,记录每块轧机的实际工艺过程参数等;过程跟踪模块负责轧件加工过程位置和数据跟踪,并在不同的触发点调用其他功能模块,进行自动轧钢的轧件调度控制和轧制节奏控制;模型计算模块利用数学模型,进行轧机的轧制规程计算和控冷系统的控制参数计算·通过各功能模块的协作,可以实现轧机生产过程的模型自动设定和全自动轧钢控制·该系统已经在现场成功使用·  相似文献   

15.
球磨机中储式制粉系统自寻最优控制   总被引:8,自引:0,他引:8  
为了使钢球磨煤机稳定运行在最佳工作状态,提高运行的稳定性和经济性,以磨煤机出力的数学模型为依据,对常规控制的规则进行了改进,提出将常规控制和具有自学习功能的动态自寻最优控制相结合的控制策略,设计了应用SIMENS可编程控制器(PLC)和工业微机相结合的控制系统,并编制了控制,仿真软件,通过仿真实验,验证了所设计的系统及所编制软件的正确性。  相似文献   

16.
热轧带钢生产过程中,为保证穿带自适应正常投用,需要准确区分影响轧制力预报的各个因素.本文通过计算影响系数的方式分析了轧制力的各个影响因素,以此为基础建立了线性方程组,并使用最小二乘法求解得到了准确的预报偏差量.最后通过校核机架对自适应规程进行校核,保证了自适应规程的准确性.本优化策略已成功应用于某热连轧生产线,实际生产数据表明,采用穿带自适应优化策略之后轧件的头部厚度控制精度得到了显著提高.  相似文献   

17.
凸度板形矢量法在中厚板中的应用   总被引:2,自引:1,他引:2  
为了有效控制中厚板板形和发挥轧机生产能力,将凸度 板形矢量分析法应用于中厚板轧制规程的计算·首先分析板凸度计算模型并给出相应的在线数学模型,然后分析了凸度 板形矢量法的机理·并基于该方法分析中厚板伸长阶段的轧制特点,将伸长阶段的规程计算分解成三步:伸长阶段前几个道次在轧机能力允许范围内采用大压下量,减少轧制道次;伸长阶段的后3,4个轧制道次,采用凸度 板形矢量法,控制轧件凸度和板形;通过调节总轧制道次数或最大轧制力限制系数,使得最后道次的出口厚度等于目标厚度·通过长期在线应用,表明该方法对板形有较强的控制能力,适合于中厚板的在线计算机过程控制·  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号