首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Central Andes are the Earth's highest mountain belt formed by ocean-continent collision. Most of this uplift is thought to have occurred in the past 20 Myr, owing mainly to thickening of the continental crust, dominated by tectonic shortening. Here we use P-to-S (compressional-to-shear) converted teleseismic waves observed on several temporary networks in the Central Andes to image the deep structure associated with these tectonic processes. We find that the Moho (the Mohorovici? discontinuity--generally thought to separate crust from mantle) ranges from a depth of 75 km under the Altiplano plateau to 50 km beneath the 4-km-high Puna plateau. This relatively thin crust below such a high-elevation region indicates that thinning of the lithospheric mantle may have contributed to the uplift of the Puna plateau. We have also imaged the subducted crust of the Nazca oceanic plate down to 120 km depth, where it becomes invisible to converted teleseismic waves, probably owing to completion of the gabbro-eclogite transformation; this is direct evidence for the presence of kinetically delayed metamorphic reactions in subducting plates. Most of the intermediate-depth seismicity in the subducting plate stops at 120 km depth as well, suggesting a relation with this transformation. We see an intracrustal low-velocity zone, 10-20 km thick, below the entire Altiplano and Puna plateaux, which we interpret as a zone of continuing metamorphism and partial melting that decouples upper-crustal imbrication from lower-crustal thickening.  相似文献   

2.
Normal faulting in central Tibet since at least 13.5 Myr ago   总被引:16,自引:0,他引:16  
Tectonic models for the evolution of the Tibetan plateau interpret observed east-west thinning of the upper crust to be the result of either increased potential energy of elevated crust or geodynamic processes that may be unrelated to plateau formation. A key piece of information needed to evaluate these models is the timing of deformation within the plateau. The onset of normal faulting has been estimated to have commenced in southern Tibet between about 14 Myr ago and about 8 Myr ago and, in central Tibet, about 4 Myr ago. Here, however, we report a minimum age of approximately 13.5 Myr for the onset of graben formation in central Tibet, based on mineralization ages determined with Rb-Sr and 40Ar-39Ar data that post-date a major graben-bounding normal fault. These data, along with evidence for prolonged activity of normal faulting in this and other Tibetan grabens, support models that relate normal faulting to processes occurring beneath the plateau. Thinning of the upper crust is most plausibly the result of potential-energy increases resulting from spatially and temporally heterogeneous changes in thermal structure and density distribution within the crust and upper mantle beneath Tibet. This is supported by recent geophysical and geological data, which indicate that spatial heterogeneity exists in both the Tibetan crust and lithospheric mantle.  相似文献   

3.
Seismic evidence for catastrophic slab loss beneath Kamchatka   总被引:5,自引:0,他引:5  
Levin V  Shapiro N  Park J  Ritzwoller M 《Nature》2002,418(6899):763-767
In the northwest Pacific Ocean, a sharp corner in the boundary between the Pacific plate and the North American plate joins a subduction zone running along the southern half of the Kamchatka peninsula with a region of transcurrent motion along the western Aleutian arc. Here we present images of the seismic structure beneath the Aleutian-Kamchatka junction and the surrounding region, indicating that: the subducting Pacific lithosphere terminates at the Aleutian-Kamchatka junction; no relict slab underlies the extinct northern Kamchatka volcanic arc; and the upper mantle beneath northern Kamchatka has unusually slow shear wavespeeds. From the tectonic and volcanic evolution of Kamchatka over the past 10 Myr (refs 3-5) we infer that at least two episodes of catastrophic slab loss have occurred. About 5 to 10 Myr ago, catastrophic slab loss shut down island-arc volcanic activity north of the Aleutian-Kamchatka junction. A later episode of slab loss, since about 2 Myr ago, seems to be related to the activity of the world's most productive island-arc volcano, Klyuchevskoy. Removal of lithospheric mantle is commonly discussed in the context of a continental collision, but our findings imply that episodes of slab detachment and loss are also important agents in the evolution of oceanic convergent margins.  相似文献   

4.
Huismans R  Beaumont C 《Nature》2011,473(7345):74-78
Uniform lithospheric extension predicts basic properties of non-volcanic rifted margins but fails to explain other important characteristics. Significant discrepancies are observed at 'type I' margins (such as the Iberia-Newfoundland conjugates), where large tracts of continental mantle lithosphere are exposed at the sea floor, and 'type II' margins (such as some ultrawide central South Atlantic margins), where thin continental crust spans wide regions below which continental lower crust and mantle lithosphere have apparently been removed. Neither corresponds to uniform extension. Instead, either crust or mantle lithosphere has been preferentially removed. Using dynamical models, we demonstrate that these margins are opposite end members: in type I, depth-dependent extension results in crustal-necking breakup before mantle-lithosphere breakup and in type II, the converse is true. These two-layer, two-stage breakup behaviours explain the discrepancies and have implications for the styles of the associated sedimentary basins. Laterally flowing lower-mantle cratonic lithosphere may underplate some type II margins, thereby contributing to their anomalous characteristics.  相似文献   

5.
郯庐断裂带张八岭隆起北段晚中生代岩体的成因   总被引:2,自引:0,他引:2  
郯庐断裂带张八岭隆起北段分布着一些晚中生代岩体,其侵位时间在120~128 Ma之间,稍晚于同期华北克拉通内江苏徐州和安徽宿州地区(简称徐宿地区)。文章通过对上述两地区的地球化学特征的对比研究,认为张八岭隆起北段岩体的岩浆来源可能是壳-幔岩浆混合形成的,并可能经历了一定的岩浆分异作用;而徐宿地区岩浆可能与深部地壳物质的部分熔融有关。上述结果表明,张八岭隆起北段岩浆来源深度较华北克拉通内部徐宿地区深,断裂带内具有较强的伸展活动及岩石圈减薄程度。分析认为,断裂带的存在和活动在岩石圈减薄过程中具有诱发和促进作用。  相似文献   

6.
Constant elevation of southern Tibet over the past 15 million years   总被引:53,自引:0,他引:53  
The uplift of the Tibetan plateau, an area that is 2,000 km wide, to an altitude of about 5,000 m has been shown to modify global climate and to influence monsoon intensity. Mechanical and thermal models for homogeneous thickening of the lithosphere make specific predictions about uplift rates of the Tibetan plateau, but the precise history of the uplift of the plateau has yet to be confirmed by observations. Here we present well-preserved fossil leaf assemblages from the Namling basin, southern Tibet, dated to approximately 15 Myr ago, which allow us to reconstruct the temperatures within the basin at that time. Using a numerical general circulation model to estimate moist static energy at the location of the fossil leaves, we reconstruct the elevation of the Namling basin 15 Myr ago to be 4,689 +/- 895 m or 4,638 +/- 847 m, depending on the reference data used. This is comparable to the present-day altitude of 4,600 m. We conclude that the elevation of the southern Tibetan plateau probably has remained unchanged for the past 15 Myr.  相似文献   

7.
Zandt G  Gilbert H  Owens TJ  Ducea M  Saleeby J  Jones CH 《Nature》2004,431(7004):41-46
Seismic data provide images of crust-mantle interactions during ongoing removal of the dense batholithic root beneath the southern Sierra Nevada mountains in California. The removal appears to have initiated between 10 and 3 Myr ago with a Rayleigh-Taylor-type instability, but with a pronounced asymmetric flow into a mantle downwelling (drip) beneath the adjacent Great Valley. A nearly horizontal shear zone accommodated the detachment of the ultramafic root from its granitoid batholith. With continuing flow into the mantle drip, viscous drag at the base of the remaining approximately 35-km-thick crust has thickened the crust by approximately 7 km in a narrow welt beneath the western flank of the range. Adjacent to the welt and at the top of the drip, a V-shaped cone of crust is being dragged down tens of kilometres into the core of the mantle drip, causing the disappearance of the Moho in the seismic images. Viscous coupling between the crust and mantle is therefore apparently driving present-day surface subsidence.  相似文献   

8.
Deep roots of the Messinian salinity crisis   总被引:3,自引:0,他引:3  
The Messinian salinity crisis--the desiccation of the Mediterranean Sea between 5.96 and 5.33 million years (Myr) ago--was one of the most dramatic events on Earth during the Cenozoic era. It resulted from the closure of marine gateways between the Atlantic Ocean and the Mediterranean Sea, the causes of which remain enigmatic. Here we use the age and composition of volcanic rocks to reconstruct the geodynamic evolution of the westernmost Mediterranean from the Middle Miocene epoch to the Pleistocene epoch (about 12.1-0.65 Myr ago). Our data show that a marked shift in the geochemistry of mantle-derived volcanic rocks, reflecting a change from subduction-related to intraplate-type volcanism, occurred between 6.3 and 4.8 Myr ago, largely synchronous with the Messinian salinity crisis. Using a thermomechanical model, we show that westward roll back of subducted Tethys oceanic lithosphere and associated asthenospheric upwelling provides a plausible mechanism for producing the shift in magma chemistry and the necessary uplift (approximately 1 km) along the African and Iberian continental margins to close the Miocene marine gateways, thereby causing the Messinian salinity crisis.  相似文献   

9.
Clark MK 《Nature》2012,483(7387):74-77
Because the inertia of tectonic plates is negligible, plate velocities result from the balance of forces acting at plate margins and along their base. Observations of past plate motion derived from marine magnetic anomalies provide evidence of how continental deformation may contribute to plate driving forces. A decrease in convergence rate at the inception of continental collision is expected because of the greater buoyancy of continental than oceanic lithosphere, but post-collisional rates are less well understood. Slowing of convergence has generally been attributed to the development of high topography that further resists convergent motion; however, the role of deforming continental mantle lithosphere on plate motions has not previously been considered. Here I show that the rate of India's penetration into Eurasia has decreased exponentially since their collision. The exponential decrease in convergence rate suggests that contractional strain across Tibet has been constant throughout the collision at a rate of 7.03?×?10(-16)?s(-1), which matches the current rate. A constant bulk strain rate of the orogen suggests that convergent motion is resisted by constant average stress (constant force) applied to a relatively uniform layer or interface at depth. This finding follows new evidence that the mantle lithosphere beneath Tibet is intact, which supports the interpretation that the long-term strain history of Tibet reflects deformation of the mantle lithosphere. Under conditions of constant stress and strength, the deforming continental lithosphere creates a type of viscous resistance that affects plate motion irrespective of how topography evolved.  相似文献   

10.
Abers GA  Ferris A  Craig M  Davies H  Lerner-Lam AL  Mutter JC  Taylor B 《Nature》2002,418(6900):862-865
In many highly extended rifts on the Earth, tectonic removal of the upper crust exhumes mid-crustal rocks, producing metamorphic core complexes. These structures allow the upper continental crust to accommodate tens of kilometres of extension, but it is not clear how the lower crust and underlying mantle respond. Also, despite removal of the upper crust, such core complexes remain both topographically high and in isostatic equilibrium. Because many core complexes in the western United States are underlain by a flat Moho discontinuity, it has been widely assumed that their elevation is supported by flow in the lower crust or by magmatic underplating. These processes should decouple upper-crust extension from that in the mantle. In contrast, here we present seismic observations of metamorphic core complexes of the western Woodlark rift that show the overall crust to be thinned beneath regions of greatest surface extension. These core complexes are actively being exhumed at a rate of 5-10 km Myr(-1), and the thinning of the underlying crust appears to be compensated by mantle rocks of anomalously low density, as indicated by low seismic velocities. We conclude that, at least in this case, the development of metamorphic core complexes and the accommodation of high extension is not purely a crustal phenomenon, but must involve mantle extension.  相似文献   

11.
The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 1958. The preservation of Alpine topography in the Gamburtsevs may reflect extremely low long-term erosion rates beneath the ice sheet, but the mountains' origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere.  相似文献   

12.
塔里木盆地深部构造与震旦纪裂谷   总被引:3,自引:0,他引:3  
塔里木盆地是一个发育在塔里木反块中部的大型克拉通盆地,它位于一近东西向展布的地幔隆起之上,其地壳厚度为41~50km。盆地基底结构复杂,由太古界—下元古界深变质岩系和中上元古界浅变质岩系经800Ma前的热构造事件拼合固结而成。基底四周被深大断裂切割,控制和影响着盆地的形成与演化。震旦纪,岩石圈伸展分裂,塔里木盆地南北缘均为被动大陆边缘,其裂谷作用具有北强南弱东强西弱的特点。因此,在盆地部形成夭折裂谷,盆地西南则表现为克拉通内坳陷  相似文献   

13.
Large igneous provinces (LIPs) are known for their rapid production of enormous volumes of magma (up to several million cubic kilometres in less than a million years), for marked thinning of the lithosphere, often ending with a continental break-up, and for their links to global environmental catastrophes. Despite the importance of LIPs, controversy surrounds even the basic idea that they form through melting in the heads of thermal mantle plumes. The Permo-Triassic Siberian Traps--the type example and the largest continental LIP--is located on thick cratonic lithosphere and was synchronous with the largest known mass-extinction event. However, there is no evidence of pre-magmatic uplift or of a large lithospheric stretching, as predicted above a plume head. Moreover, estimates of magmatic CO(2) degassing from the Siberian Traps are considered insufficient to trigger climatic crises, leading to the hypothesis that the release of thermogenic gases from the sediment pile caused the mass extinction. Here we present petrological evidence for a large amount (15?wt%) of dense recycled oceanic crust in the head of the plume and develop a thermomechanical model that predicts no pre-magmatic uplift and requires no lithospheric extension. The model implies extensive plume melting and heterogeneous erosion of the thick cratonic lithosphere over the course of a few hundred thousand years. The model suggests that massive degassing of CO(2) and HCl, mostly from the recycled crust in the plume head, could alone trigger a mass extinction and predicts it happening before the main volcanic phase, in agreement with stratigraphic and geochronological data for the Siberian Traps and other LIPs.  相似文献   

14.
Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate tectonic processes.  相似文献   

15.
利用布设在山东省境内的宽频带流动地震观测台阵和国家地震局固定地震观测台站记录的地震数据, 应用接收函数和SKS波分裂方法, 研究山东地区的地壳与上地幔结构, 得到该区域的地壳厚度、地壳平均P波与S波的波速比以及SKS波分裂延迟的分布情况。结果表明, 山东地区地壳厚度范围为28~39 km; 胶南隆起的北段和南段以及鲁西隆起北侧济阳凹陷的地壳厚度小于32 km, 鲁西隆起下方的地壳比较厚。研究区 P波与S波的波速比主要分布在1.67~1.94之间, 鲁西隆起西南部和胶南隆起北段该比值小于1.75, 可能是由中上地壳增厚以及下地壳减薄和拆沉造成。鲁西隆起南北P波与S波的波速比差异反映地壳活动的差异。地幔物质的各向异性显示, 山东地区西部的地壳减薄和拆沉可能仍在进行。  相似文献   

16.
Thompson RN  Gibson SA 《Nature》2000,407(6803):502-506
Both scaled laboratory experiments and numerical models of terrestrial mantle plumes produce 'balloon-on-a-string' structures, with a bulbous head followed by a stem-like tail. Discussions have focused on whether their initial upwelling heads are hotter than the tails or cooler, as a result of entrainment of ambient mantle during ascent, and also on whether initial plume upwelling is a newtonian or non-newtonian process. The temperature of the mantle delivered to the base of the lithosphere is a critical parameter in such debates. Dry continental magmas can normally contribute little to this topic because their hottest (ultramafic) examples can be expected to be trapped, owing to their density, beneath the Moho. Here we report a rare case in which olivine (with 93.3% forsterite; Mg2SiO4) phenocrysts, precipitated from an unerupted komatiitic melt (approximately 24% MgO) of the Tristan mantle plume head 132 Myr ago, were carried to upper-crust levels in northwest Namibia by less Mg-rich (9.6-18.5% MgO) magmas. We infer that the hidden melt, generated when the plume impinged on the base of the lithosphere, originated in the mantle with a potential temperature of approximately 1,700 degrees C. This is approximately 400 degrees C above ambient and much hotter than the temperatures previously calculated for steady-state Phanerozoic mantle plumes. Published data show that the same conclusion can be reached for the initial Iceland and Galapagos plumes.  相似文献   

17.
Systematical studies of post-collisional igneous rocks in the Dabie orogen suggest that the thickened mafic lower crust of the oro- gen was partially melted to form low-Mg# adakitic rocks at 143-131 Ma. Delamination and foundering of the thickened mafic lower crust occurred at 130 Ma, which caused the mantle upwelling and following mafic and granitic magmatic intrusions. Mig- matite in the North Dabie zone, coeval with the formation of low-Mg# adakitic intrusions in the Dabie orogen, was formed by partial melting of exhumed ultrahigh-pressure metamorphic rocks at middle crustal level. This paper argues that the partial melting of thickened lower and middle crust before mountain-root collapse needs lithospheric thinning. Based on the geothermal gradient of 6.6~C/km for lithospheric mantle and initial partial melting temperature of ~1000~C for the lower mafic crust, it can be estimated that the thickness of lithospheric mantle beneath thickened lower crust has been thinned to 〈45 km when the thickened lower crust was melting. Thus, a two-stage model for mountain-root removal is proposed. First, the lithospheric mantle keel was partially removal by mantle convection at 145 Ma. Loss of the lower lithosphere would increase heat flow into the base of the crust and would cause middle-lower crustal melting. Second, partial melting of the thickened lower crust has weakened the lower crust and increased its gravity instability, thus triggering delamination and foundering of the thickened mafic lower crust or mountain-root collapse. Therefore, convective removal and delamination of the thickened lower crust as two mechanisms of lithospheric thin- ning are related to causality.  相似文献   

18.
The western Yunnan area is a natural laboratory with fully developed and best preserved Tethyan orogen in the world. Seismic tomography reveals a slab-like high velocity anomaly down to 250 km beneath the western Yunnan Tethyan orogen, to its west there is a low-velocity column about 300 km wide. In the region from Lancangjiang to Mojiang an obvious low velocity in the lower crust and uppermost mantle overlies on the slab. Synthesizing the available geological and geochemical results, the present paper demonstrates that this slab-like high velocity anomaly is a part of the subducted plate of Yangtze continental segment after the closure of Paleotethys. The collision of India and Eurasia continent starting from 50–60 MaBP might trigger thermal disturbance in the upper mantle and cause the uprising of asthenosphere, in that case the subducted Yangtze plate could be broken off, causing Cenozoic magmatic activities and underplating in the Lancangjiang-Mojiang region.  相似文献   

19.
Zhisheng A  Kutzbach JE  Prell WL  Porter SC 《Nature》2001,411(6833):62-66
The climates of Asia are affected significantly by the extent and height of the Himalayan mountains and the Tibetan plateau. Uplift of this region began about 50 Myr ago, and further significant increases in altitude of the Tibetan plateau are thought to have occurred about 10-8 Myr ago, or more recently. However, the climatic consequences of this uplift remain unclear. Here we use records of aeolian sediments from China and marine sediments from the Indian and North Pacific oceans to identify three stages of evolution of Asian climates: first, enhanced aridity in the Asian interior and onset of the Indian and east Asian monsoons, about 9-8 Myr ago; next, continued intensification of the east Asian summer and winter monsoons, together with increased dust transport to the North Pacific Ocean, about 3.6-2.6 Myr ago; and last, increased variability and possible weakening of the Indian and east Asian summer monsoons and continued strengthening of the east Asian winter monsoon since about 2.6 Myr ago. The results of a numerical climate-model experiment, using idealized stepwise increases of mountain-plateau elevation, support the argument that the stages in evolution of Asian monsoons are linked to phases of Himalaya-Tibetan plateau uplift and to Northern Hemisphere glaciation.  相似文献   

20.
LaRiviere JP  Ravelo AC  Crimmins A  Dekens PS  Ford HL  Lyle M  Wara MW 《Nature》2012,486(7401):97-100
Deep-time palaeoclimate studies are vitally important for developing a complete understanding of climate responses to changes in the atmospheric carbon dioxide concentration (that is, the atmospheric partial pressure of CO(2), p(co(2))). Although past studies have explored these responses during portions of the Cenozoic era (the most recent 65.5 million years (Myr) of Earth history), comparatively little is known about the climate of the late Miocene (~12-5 Myr ago), an interval with p(co(2)) values of only 200-350?parts per million by volume but nearly ice-free conditions in the Northern Hemisphere and warmer-than-modern temperatures on the continents. Here we present quantitative geochemical sea surface temperature estimates from the Miocene mid-latitude North Pacific Ocean, and show that oceanic warmth persisted throughout the interval of low p(co(2)) ~12-5 Myr ago. We also present new stable isotope measurements from the western equatorial Pacific that, in conjunction with previously published data, reveal a long-term trend of thermocline shoaling in the equatorial Pacific since ~13?Myr ago. We propose that a relatively deep global thermocline, reductions in low-latitude gradients in sea surface temperature, and cloud and water vapour feedbacks may help to explain the warmth of the late Miocene. Additional shoaling of the thermocline after 5?Myr ago probably explains the stronger coupling between p(co(2)), sea surface temperatures and climate that is characteristic of the more recent Pliocene and Pleistocene epochs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号