首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
SATB1 targets chromatin remodelling to regulate genes over long distances   总被引:23,自引:0,他引:23  
  相似文献   

2.
The gut microbiota is a complex ecosystem that has coevolved with host physiology. Colonization of germ-free (GF) mice with a microbiota promotes increased vessel density in the small intestine, but little is known about the mechanisms involved. Tissue factor (TF) is the membrane receptor that initiates the extrinsic coagulation pathway, and it promotes developmental and tumour angiogenesis. Here we show that the gut microbiota promotes TF glycosylation associated with localization of TF on the cell surface, the activation of coagulation proteases, and phosphorylation of the TF cytoplasmic domain in the small intestine. Anti-TF treatment of colonized GF mice decreased microbiota-induced vascular remodelling and expression of the proangiogenic factor angiopoietin-1 (Ang-1) in the small intestine. Mice with a genetic deletion of the TF cytoplasmic domain or with hypomorphic TF (F3) alleles had a decreased intestinal vessel density. Coagulation proteases downstream of TF activate protease-activated receptor (PAR) signalling implicated in angiogenesis. Vessel density and phosphorylation of the cytoplasmic domain of TF were decreased in small intestine from PAR1-deficient (F2r(-/-)) but not PAR2-deficient (F2rl1(-/-)) mice, and inhibition of thrombin showed that thrombin-PAR1 signalling was upstream of TF phosphorylation. Thus, the microbiota-induced extravascular TF-PAR1 signalling loop is a novel pathway that may be modulated to influence vascular remodelling in the small intestine.  相似文献   

3.
4.
Recovery of learning and memory is associated with chromatin remodelling   总被引:1,自引:0,他引:1  
Fischer A  Sananbenesi F  Wang X  Dobbin M  Tsai LH 《Nature》2007,447(7141):178-182
Neurodegenerative diseases of the central nervous system are often associated with impaired learning and memory, eventually leading to dementia. An important aspect in pre-clinical research is the exploration of strategies to re-establish learning ability and access to long-term memories. By using a mouse model that allows temporally and spatially restricted induction of neuronal loss, we show here that environmental enrichment reinstated learning behaviour and re-established access to long-term memories after significant brain atrophy and neuronal loss had already occurred. Environmental enrichment correlated with chromatin modifications (increased histone-tail acetylation). Moreover, increased histone acetylation by inhibitors of histone deacetylases induced sprouting of dendrites, an increased number of synapses, and reinstated learning behaviour and access to long-term memories. These data suggest that inhibition of histone deacetylases might be a suitable therapeutic avenue for neurodegenerative diseases associated with learning and memory impairment, and raises the possibility of recovery of long-term memories in patients with dementia.  相似文献   

5.
A chromatin remodelling complex involved in transcription and DNA processing   总被引:44,自引:0,他引:44  
Shen X  Mizuguchi G  Hamiche A  Wu C 《Nature》2000,406(6795):541-544
  相似文献   

6.
7.
Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.  相似文献   

8.
Ma D  Lu P  Yan C  Fan C  Yin P  Wang J  Shi Y 《Nature》2012,483(7391):632-636
Food-borne hemorrhagic Escherichia coli, exemplified by the strains O157:H7 and O104:H4 (refs?1, 2), require elaborate acid-resistance systems (ARs) to survive the extremely acidic environment such as the stomach (pH?≈?2). AR2 expels intracellular protons through the decarboxylation of L-glutamate (Glu) in the cytoplasm and exchange of the reaction product γ-aminobutyric acid (GABA) with extracellular Glu. The latter process is mediated by the Glu-GABA antiporter GadC, a representative member of the amino-acid-polyamine-organocation superfamily of membrane transporters. The functional mechanism of GadC remains largely unknown. Here we show, with the use of an in vitro proteoliposome-based assay, that GadC transports GABA/Glu only under acidic conditions, with no detectable activity at pH values higher than 6.5. We determined the crystal structure of E.?coli GadC at 3.1?? resolution under basic conditions. GadC, comprising 12 transmembrane segments (TMs), exists in a closed state, with its carboxy-terminal domain serving as a plug to block an otherwise inward-open conformation. Structural and biochemical analyses reveal the essential transport residues, identify the transport path and suggest a conserved transport mechanism involving the rigid-body rotation of a helical bundle for GadC and other amino acid antiporters.  相似文献   

9.
Riedl SJ  Li W  Chao Y  Schwarzenbacher R  Shi Y 《Nature》2005,434(7035):926-933
Apoptosis is executed by caspases, which undergo proteolytic activation in response to cell death stimuli. The apoptotic protease-activating factor 1 (Apaf-1) controls caspase activation downstream of mitochondria. During apoptosis, Apaf-1 binds to cytochrome c and in the presence of ATP/dATP forms an apoptosome, leading to the recruitment and activation of the initiator caspase, caspase-9 (ref. 2). The mechanisms underlying Apaf-1 function are largely unknown. Here we report the 2.2-A crystal structure of an ADP-bound, WD40-deleted Apaf-1, which reveals the molecular mechanism by which Apaf-1 exists in an inactive state before ATP binding. The amino-terminal caspase recruitment domain packs against a three-layered alpha/beta fold, a short helical motif and a winged-helix domain, resulting in the burial of the caspase-9-binding interface. The deeply buried ADP molecule serves as an organizing centre to strengthen interactions between these four adjoining domains, thus locking Apaf-1 in an inactive conformation. Apaf-1 binds to and hydrolyses ATP/dATP and their analogues. The binding and hydrolysis of nucleotides seem to drive conformational changes that are essential for the formation of the apoptosome and the activation of caspase-9.  相似文献   

10.
11.
12.
Zhang P  Wang J  Shi Y 《Nature》2010,468(7324):717-720
The energy-coupling factor (ECF) transporters, responsible for vitamin uptake in prokaryotes, are a unique family of membrane transporters. Each ECF transporter contains a membrane-embedded, substrate-binding protein (known as the S component), an energy-coupling module that comprises two ATP-binding proteins (known as the A and A' components) and a transmembrane protein (known as the T component). The structure and transport mechanism of the ECF family remain unknown. Here we report the crystal structure of RibU, the S component of the ECF-type riboflavin transporter from Staphylococcus aureus at 3.6-? resolution. RibU contains six transmembrane segments, adopts a previously unreported transporter fold and contains a riboflavin molecule bound to the L1 loop and the periplasmic portion of transmembrane segments 4-6. Structural analysis reveals the essential ligand-binding residues, identifies the putative transport path and, with sequence alignment, uncovers conserved structural features and suggests potential mechanisms of action among the ECF transporters.  相似文献   

13.
Structure and evolution of a human erythroid transcription factor   总被引:44,自引:0,他引:44  
  相似文献   

14.
Renault L  Guibert B  Cherfils J 《Nature》2003,426(6966):525-530
Small GTP-binding (G) proteins are activated by GDP/GTP nucleotide exchange stimulated by guanine nucleotide exchange factors (GEFs). Nucleotide dissociation from small G protein-GEF complexes involves transient GDP-bound intermediates whose structures have never been described. In the case of Arf proteins, small G proteins that regulate membrane traffic in eukaryotic cells, such intermediates can be trapped either by the natural inhibitor brefeldin A or by charge reversal at the catalytic glutamate of the Sec7 domain of their GEFs. Here we report the crystal structures of these intermediates that show that membrane recruitment of Arf and nucleotide dissociation are separate reactions stimulated by Sec7. The reactions proceed through sequential rotations of the Arf.GDP core towards the Sec7 catalytic site, and are blocked by interfacial binding of brefeldin A and unproductive stabilization of GDP by charge reversal. The structural characteristics of the reaction and its modes of inhibition reveal unexplored ways in which to inhibit the activation of small G proteins.  相似文献   

15.
Lu F  Li S  Jiang Y  Jiang J  Fan H  Lu G  Deng D  Dang S  Zhang X  Wang J  Yan N 《Nature》2011,472(7342):243-246
The nucleobase/ascorbate transporter (NAT) proteins, also known as nucleobase/cation symporter 2 (NCS2) proteins, are responsible for the uptake of nucleobases in all kingdoms of life and for the transport of vitamin C in mammals. Despite functional characterization of the NAT family members in bacteria, fungi and mammals, detailed structural information remains unavailable. Here we report the crystal structure of a representative NAT protein, the Escherichia coli uracil/H(+) symporter UraA, in complex with uracil at a resolution of 2.8??. UraA has a novel structural fold, with 14 transmembrane segments (TMs) divided into two inverted repeats. A pair of antiparallel β-strands is located between TM3 and TM10 and has an important role in structural organization and substrate recognition. The structure is spatially arranged into a core domain and a gate domain. Uracil, located at the interface between the two domains, is coordinated mainly by residues from the core domain. Structural analysis suggests that alternating access of the substrate may be achieved through conformational changes of the gate domain.  相似文献   

16.
Structure, expression and function of a schwannoma-derived growth factor   总被引:5,自引:0,他引:5  
H Kimura  W H Fischer  D Schubert 《Nature》1990,348(6298):257-260
During the development of the nervous system, cells require growth factors that regulate their division and survival. To identify new growth factors, serum-free growth-conditioned media from many clonal cell lines were screened for the presence of mitogens for central nervous system glial cells. A cell line secreting a potent glial mitogen was established from a tumour (or 'schwannoma') derived from the sheath of the sciatic nerve. The cells of the tumour, named JS1 cells, were adapted to clonal culture and identified as Schwann cells. Schwann cells secrete an autocrine mitogen and human schwannoma extracts have mitogenic activity on glial cells. Until now, neither mitogen has been purified. Here we report the purification and characterization of a mitogenic molecule, designated schwannoma-derived growth factor (SDGF), from the growth-conditioned medium of the JS1 Schwann cell line. SDGF belongs to the epidermal growth factor family, and is an autocrine growth factor as well as a mitogen for astrocytes, Schwann cells and fibroblasts.  相似文献   

17.
Chen KM  Harjes E  Gross PJ  Fahmy A  Lu Y  Shindo K  Harris RS  Matsuo H 《Nature》2008,452(7183):116-119
The human APOBEC3G (apolipoprotein B messenger-RNA-editing enzyme, catalytic polypeptide-like 3G) protein is a single-strand DNA deaminase that inhibits the replication of human immunodeficiency virus-1 (HIV-1), other retroviruses and retrotransposons. APOBEC3G anti-viral activity is circumvented by most retroelements, such as through degradation by HIV-1 Vif. APOBEC3G is a member of a family of polynucleotide cytosine deaminases, several of which also target distinct physiological substrates. For instance, APOBEC1 edits APOB mRNA and AID deaminates antibody gene DNA. Although structures of other family members exist, none of these proteins has elicited polynucleotide cytosine deaminase or anti-viral activity. Here we report a solution structure of the human APOBEC3G catalytic domain. Five alpha-helices, including two that form the zinc-coordinating active site, are arranged over a hydrophobic platform consisting of five beta-strands. NMR DNA titration experiments, computational modelling, phylogenetic conservation and Escherichia coli-based activity assays combine to suggest a DNA-binding model in which a brim of positively charged residues positions the target cytosine for catalysis. The structure of the APOBEC3G catalytic domain will help us to understand functions of other family members and interactions that occur with pathogenic proteins such as HIV-1 Vif.  相似文献   

18.
Wang F  Mei Z  Qi Y  Yan C  Hu Q  Wang J  Shi Y 《Nature》2011,471(7338):331-335
Regulated proteolysis by ATP-dependent proteases is universal in all living cells. Bacterial ClpC, a member of the Clp/Hsp100 family of AAA+ proteins (ATPases associated with diverse cellular activities) with two nucleotide-binding domains (D1 and D2), requires the adaptor protein MecA for activation and substrate targeting. The activated, hexameric MecA-ClpC molecular machine harnesses the energy of ATP binding and hydrolysis to unfold specific substrate proteins and translocate the unfolded polypeptide to the ClpP protease for degradation. Here we report three related crystal structures: a heterodimer between MecA and the amino domain of ClpC, a heterododecamer between MecA and D2-deleted ClpC, and a hexameric complex between MecA and full-length ClpC. In conjunction with biochemical analyses, these structures reveal the organizational principles behind the hexameric MecA-ClpC complex, explain the molecular mechanisms for MecA-mediated ClpC activation and provide mechanistic insights into the function of the MecA-ClpC molecular machine. These findings have implications for related Clp/Hsp100 molecular machines.  相似文献   

19.
Structure and gating mechanism of the acetylcholine receptor pore   总被引:2,自引:0,他引:2  
Miyazawa A  Fujiyoshi Y  Unwin N 《Nature》2003,423(6943):949-955
The nicotinic acetylcholine receptor controls electrical signalling between nerve and muscle cells by opening and closing a gated, membrane-spanning pore. Here we present an atomic model of the closed pore, obtained by electron microscopy of crystalline postsynaptic membranes. The pore is shaped by an inner ring of 5 alpha-helices, which curve radially to create a tapering path for the ions, and an outer ring of 15 alpha-helices, which coil around each other and shield the inner ring from the lipids. The gate is a constricting hydrophobic girdle at the middle of the lipid bilayer, formed by weak interactions between neighbouring inner helices. When acetylcholine enters the ligand-binding domain, it triggers rotations of the protein chains on opposite sides of the entrance to the pore. These rotations are communicated through the inner helices, and open the pore by breaking the girdle apart.  相似文献   

20.
The fast reaction of the actin-based cytoskeleton in motile cells after stimulation with a chemoattractant requires a signal-transduction chain that creates a very specific environment at distinct regions beneath the plasma membrane. Dictyostelium hisactophilin, a unique actin-binding protein, is a submembranous pH sensor that signals slight changes of the H+ concentration to actin by inducing actin polymerization and binding to microfilaments only at pH values below seven. It has a relative molecular mass of 13.5K and its most unusual feature is the presence of 31 histidine residues among its total of 118 amino acids. The transduction of an external signal from the plasma membrane to the cytoskeleton is poorly understood. Here we report the protein's structure in solution determined by nuclear magnetic resonance spectroscopy. The nuclear Overhauser effect intensities of the three-dimensional nuclear Overhauser spectra were used directly in the calculations. The overall folding of histactophilin is similar to that of interleukin-1 beta and fibroblast growth factor, but the primary amino-acid sequence of hisactophilin is unrelated to these two proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号