首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
固定化里氏木霉制备纤维素酶的研究   总被引:3,自引:0,他引:3  
采用多孔塑料吸附固定里氏木霉(Trichoderma reesei RutC30)菌丝细胞,以硫酸盐纸浆为底物,重复分批发酵生产纤维素酶,滤纸酶活力可达2.4IU.mL^-1,纤维二糖酶活力为0.2IU.mL^-1,分别是游离细胞发酵的1.6倍和2.2倍,固定化菌丝细胞性状稳定,连续使用40d以上,未见酶活力下降,酶解试验表明,固定化细胞生产的酶液对木质纤维原料具有很高的降解效率,当每克底物的酶用量在滤纸酶活力20IU以上时,酶解得率可达90%以上。  相似文献   

2.
影响固定化里氏木霉合成纤维素酶的动力学因素   总被引:3,自引:0,他引:3  
对影响固定化里氏木霉细胞合成纤维素酶的主要动力学进行了研究。以纸浆为主要碳源,采用固定化细胞,在250mL摇瓶中重复分批发酵,结果表明,在一批加料条件下,适宜于固定化细胞产酶的条件是:纸浆浓度1.5%~2.0%,C/N为8,培养液的初始pH值4.0摇瓶转速200r/min及26℃。分批添加纸浆可以减少固体底物对氧气输送和物质扩散等方面造成的不良影响,有利于增加底物的总用量,从而促进纤维素酶的合成,  相似文献   

3.
在30L发酵罐中研究里氏木霉HC-415菌液体发酵产纤维素酶菌体形态学变化时,发现该菌的形态变化可分为4个时期;第Ⅰ期为接种后的0~24h,菌体形态主要呈丝状伸长,较少分枝,产酶基本处于停滞期;第Ⅱ期为24~60h,菌丝体不断伸长,分枝增多,菌体变粗,酶活性增长明显;第Ⅲ期在60~132h,此期菌丝体变粗变短,并出现横隔,分枝顶部生出许多膨大的圆形结节,该期为纤维素酶活力的快速增长期和高峰稳定期;第Ⅳ期为132h后,期间菌丝体呈粗短圆状,仍有许多膨大的结节,但菌体数量逐渐变少,酶活性开始逐步下降.结果表明:里氏木霉液体发酵产纤维素酶时菌体形态与发酵液中的酶活性变化密切相关,形态学特征可作为实际生产中快速调控发酵液成熟度的重要指标。  相似文献   

4.
研究了摇瓶中不同浓度纸浆为碳源对里氏木霉产纤维素酶的影响.结果表明:最佳的碳源质量浓度为12g/L,在此条件下第3天的滤纸酶活、CMC酶活和β-葡萄糖苷酶酶活分别为1.68、0.96和0.28U/mL.总碳源为15g/L下采用分批补料技术可以有效提高里氏木霉分泌纤维素酶.使用起始纸浆浓度为9g/L,第2、3、4天分别加入2g/L纸浆,其第3天的滤纸酶活、CMC酶活和β-葡萄糖苷酶酶活分别为2.41、0.72和0.27U/mL,较15g/L纸浆为碳源分批培养滤纸酶活提高1.8倍.  相似文献   

5.
绿色木霉Tr-A1固体发酵生产纤维素酶   总被引:2,自引:0,他引:2  
以麸皮和玉米秸粉为主要原料,采用固体发酵技术优化绿色木霉(Tr-A1)菌株固体发酵产纤维素酶的条件。结果表明:当麸皮和玉米秸粉的质量比为4∶6,接种量的质量分数为10%,含水量的质量分数为55%,初始pH值为5.0,28℃~30℃固体培养72 h时,羧甲基纤维素(CMC)酶活可达到72.5 U/g。  相似文献   

6.
通过调节通风量控制溶解氧浓度研究其对里氏木霉产纤维素酶的促进作用.结果表明:当通风量固定为25L/(h·L)时,反应22~40h期间溶解氧浓度过低,0~15h和45h以后溶解氧浓度偏高.45~80h期间气体中CO2含量在0.8%以上,不利于菌丝的生长.调节通风量控制溶解氧浓度,可有效地提高里氏木霉合成纤维素酶的能力,并显著地缩短产酶时间.当溶解氧为20%~30%时,气体中CO2含量降到0.4%左右,菌丝生长代谢快,滤纸酶活从固定通风量时的2.75U/mL增加到3.54U/mL,提高28.7%,产酶酶活最高的时间也从84h缩短到72h.  相似文献   

7.
在分批补料的基础上,采用间歇出酶的方法,对里氏木霉产纤维素酶进行了研究。结果表明:分批补料过程中最佳的补料速度为5.5 g/(L·d),在此条件下产酶第8天滤纸酶活力和β-葡萄糖苷酶活力达到14.40 U/mL和1.59 U/mL。在分批补料的基础上进行间歇出酶,与对照相比,第4、6、8天出酶模式(模式1)时,总滤纸酶活力提高18.14%; 第4、7天出酶模式(模式2)时,总滤纸酶活力提高17.75%; 第5、8天出酶模式(模式3)时,总滤纸酶活力提高27.35%。研究表明,通过间歇出酶可以有效提高纤维素酶总滤纸酶的活力。  相似文献   

8.
采用里氏木霉为发酵菌种,通过液体深层发酵的方法,制备纤维素酶粗酶液,并用于酶促打浆.在温度30,℃、转速120,r/min条件下培养96,h,系统研究了氮源和碳源种类、碳源用量、麸皮用量、微量元素液和营养元素液加入量对纤维素酶各组分酶活的影响.结果表明,在以0.2%硫酸铵为氮源,1%思茅松漂白硫酸盐浆为碳源,微量元素液和营养元素液加入量分别为0.2%、8%,麸皮加入量为1%的条件下,能够获得较高的纤维素酶酶活.酶促打浆研究结果表明:当纤维素酶用量为7,U/g时,思茅松漂白硫酸盐浆的打浆度提高40%,且纸浆强度性能损失小.  相似文献   

9.
对里氏木霉和酵母菌混合发酵秸杆提高其粗蛋白含量的发酵工艺进行了研究。结果表明其发酵最优工艺条件 :以尿素作为氮源 ,里氏木霉接种 2 4 h后接种假丝酵母 ,接种量比例为 1∶ 4 (酵母∶里氏木霉 ) ,于 p H3.0 ,30℃下培养 4 d。粗蛋白含量可达 30 .5 5 % ,粗纤维转化率可达 33.5 %。  相似文献   

10.
康氏木霉固体发酵生产纤维素酶条件的研究   总被引:1,自引:0,他引:1  
为利用康氏木霉(Trichoderma.koningii)降解稻草提供工艺参数,以康氏木霉(T.koningii)N18为菌株,进行了固体发酵产纤维素酶条件的优化。确定了康氏木霉(T.koningii)的最佳固体发酵培养条件:稻草:麸皮的最佳比例为6:2,最佳氮源为(NH)SO,碳氮比为6:1,含水量为200%,最适产酶pH为6.0,最佳产酶温度为28℃,最佳产酶时间为7d,康氏木霉(T.koningii)所产纤维素酶各组分酶活力分别为:羧甲基纤维素酶活力为321.64U.mL,滤纸分解酶活力为59.58U.mL。4 2 4-1-1  相似文献   

11.
本文研究了411菌株的形态特征、产纤维素酶的最适条件,并对酶学特性作了初步分析。由于该菌易培养,产酶性较稳定,因而具有一定的应用价值。  相似文献   

12.
绿色木霉固态发酵产纤维素酶条件及酶性质的研究   总被引:4,自引:0,他引:4  
对绿色木霉 Trichoderma viride9405固态发酵产纤维素酶的条件及酶的性质进行了研究。结果表明,最适产酶条件为:秸秆粉与麸皮的比 7:3;玉米秸秆粉培养基含水量250%;花生皮粉培养基含水量150%;pH4.0~4.5;温度30℃;周期72h。在玉米秸秆粉固体培养基上,所产纤维素酶CMC活力为1386u/g,FPA活力为217u/g,棉花糖化力为325u/g。必作用的最适条件为pH4. 5~5. 0,温度 50℃;在 45℃以下, pH3. 5~6. 0之间比较稳定,室温放置半年,酶活保存率在90%以上。  相似文献   

13.
里氏木霉诱导合成木聚糖酶的调控   总被引:9,自引:1,他引:9  
提出了两种不同用途的木聚糖酶的诱导合成方法。以里氏木霉为产酶菌,经适当处理后的玉米芯可诱导产生含纤维素酶(3.4IU/mL)的高活力木聚糖酶(54.4IU/mL)。以混有少量纤维素的粗木聚糖作碳源,通过分批补料及对培养条件的限制性控制里氏木霉可选择性合成木聚糖酶;选择性合成程度与碳源浓度有关,当碳源浓度为10g/L时木聚糖酶和纤维素酶活力分别为35.5IU/mL、0.2U/mL,两种酶活的比值达177.5。  相似文献   

14.
里氏木霉木聚糖酶的分离纯化及其性质   总被引:1,自引:0,他引:1  
使用硫酸铵分级沉淀、Sephadex G-25凝胶色谱脱盐、DEAE-Sephadex A-50和SP-SephadexC-50离子交换色谱等分离纯化技术,从里氏木霉(Trichoderma reesei)RutC-30培养液中分离出木聚糖酶组分,再经SephadexG-100凝胶过滤色谱进一步分离纯化,得到2个纯木聚糖酶组分A组和组分B。经SDS-PAGE鉴定两组分为单带,相对分子质量分别为20300和13500。组分A的最适反应条件为45℃、pH3.0-5.5很稳定,酶解产物主要是低聚木糖,只含少量木糖;组分B的最适反应条件为55℃、pH5.5,酶解产物全部是低聚木糖。  相似文献   

15.
康宁木霉固态发酵生产纤维素酶与木聚糖酶的研究   总被引:2,自引:0,他引:2  
以稻草和麸皮为主要原料,采用康宁木霉QF-02固态发酵生产纤维素酶及木聚糖酶。对影响产酶的多个因素进行了研究,获得了如下优化培养条件:稻草粉与麸皮比为3:2(w/w),原料粒径为20目,料水比为1:1.5(w/v),起始pH值5.5,28.5℃培养时间120h。菌种在此优化培养条件下的滤纸酶活、β-葡萄糖苷酶活、木聚糖...  相似文献   

16.
研究了里氏木霉β-聚糖酶的生物合成,并比较了以玉米芯、纸浆、粗木聚糖为碳源对里氏木霉β-聚糖酶诱导合成的影响。结果表明:里氏木霉以15 g/L的玉米芯为碳源合成β-聚糖酶,培养4 d时滤纸酶活、羧基纤维素(CMC)酶活、纤维二糖酶活和木聚糖酶活分别为1.03 FPIU/mL、0.54、0.08和149.7 IU/mL;以纸浆为碳源,可得到较高纤维素酶活、较低木聚糖酶活的β-聚糖酶;以粗木聚糖为碳源,可制备低纤维素酶活的木聚糖酶,木聚糖酶活与CMC酶活的比值高达785.4,适合于纸浆的生物漂白。  相似文献   

17.
里氏木霉产酶菌株的选育研究   总被引:1,自引:0,他引:1  
张秀江  兰芳菲  胡虹  王传兴 《河南科学》2014,(11):2244-2247
采用紫外线和亚硝酸联合诱变技术,得到产纤维素酶、木聚糖酶、β-葡聚糖酶的高产的菌株里氏木霉Y07.试验表明,诱变后菌株的木聚糖酶活由325 U/g,提高到28 500 U/g,相对于出发菌株提高了88倍;纤维素酶活由560 U/g,提高到2600 U/g,相对于出发菌株提高了4.6倍;β-葡聚糖酶活由480 U/g,提高到5500 U/g,相对于出发菌株提高了11.5倍.  相似文献   

18.
里氏木霉制备木聚糖酶的产酶历程   总被引:26,自引:1,他引:26  
以玉米芯木聚糖为原料,里氏木霉(Trichodermaresei)RutC30为菌种,采用改进的Mandels配方制备木聚糖酶,产酶历程与制备纤维素酶时有较大差异。具体表现在产酶周期短,pH值基本无下降的趋势,酶液中可溶性蛋白质浓度较低。底物浓度为7g/L时,木聚糖酶活力达1256IU/mL,比活力、酶得率及酶产率分别为8190IU/mg蛋白质、17943IU/g木聚糖和4186.7IU/L·d。产酶最终pH应控制在6~7较为适宜,酶活力最高。pH超过7.0,酶可能失活。酶解结果表明,木聚糖酶对木聚糖干粉具有很高的降解效率,当每克底物的酶用量为0.1克木聚糖干粉产的酶液量时,酶解得率一般可达90%左右。  相似文献   

19.
一株产纤维素酶绿色木霉的筛选及发酵条件优化   总被引:16,自引:0,他引:16  
从土壤中筛选到一株具有较高纤维素酶活性的绿色木霉,对其液态发酵条件进行了优化.以羧甲基纤维素钠为碳源,含量0.75%,(NH4)2SO4为氮源,含量0.4%,250mL三角瓶20%装量,5%接种量,培养基初始pH为4,28℃,180r/min培养96h,优化后发酵液中Cx酶活达到277.7U/mL发酵液.  相似文献   

20.
纤维素酶是一种多组分起协同作用的复合酶系 .它通常包括内切型葡聚糖酶 (EC3 .2 .1 .4,也称Cx酶 )、外切型葡聚糖酶 (EC3 .2 .1 .91 ,也称C1酶、微晶纤维素酶 )和纤维二糖酶 (EC3 .2 .1 .2 1 ,也称β 葡萄糖苷酶 )等 3种主要组分[1~ 3 ] .不同来源的纤维素酶其酶系在组成上具有较大差别 ,其协同组合酶之种类、比例亦往往不同 ,即酶系中的各组分对菌株具有严格的专一性 .但是 ,当突变发生时 ,它们的构成比例将会有所变化[4] .一旦纤维素酶的各组分发生变化 ,则纤维素酶系的协同作用也可能发生变化 .因此 ,我们应设法获得某些纤维…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号