首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro reconstitution of active ribulose bisphosphate carboxylase (Rubisco) from unfolded polypeptides is facilitated by the molecular chaperones: chaperonin-60 from Escherichia coli (groEL), yeast mitochondria (hsp60) or chloroplasts (Rubisco sub-unit-binding protein), together with chaperonin-10 from E. coli (groES), and Mg-ATP. Because chaperonins are ubiquitous, a conserved Mg-ATP-dependent mechanism exists that uses the chaperonins to facilitate the folding of some other proteins.  相似文献   

2.
A nuclear encoded mitochondrial heat-shock protein hsp60 is required for the assembly into oligomeric complexes of proteins imported into the mitochondrial matrix. hsp60 is a member of the 'chaperonin' class of protein factors, which include the Escherichia coli groEL protein and the Rubisco subunit-binding protein of chloroplasts.  相似文献   

3.
The mitochondrial chaperonin hsp60 is required for its own assembly   总被引:14,自引:0,他引:14  
M Y Cheng  F U Hartl  A L Horwich 《Nature》1990,348(6300):455-458
Heatshock protein 60 (hsp60) in the matrix of mitochondria is essential for the folding and assembly of newly imported proteins. Hsp60 belongs to a class of structurally related chaperonins found in organelles of endosymbiotic origin and in the bacterial cytosol. Hsp60 monomers form a complex arranged as two stacked 7-mer rings. This 14-mer complex binds unfolded proteins at its surface, then seems to catalyse their folding in an ATP-dependent process. The question arises as to how such an assembly machinery is itself folded and assembled. Hsp60 subunits are encoded by a nuclear gene and translated in the cytosol as precursors which are translocated into mitochondria and proteolytically processed. In both intact cells and isolated mitochondria of the hsp60-defective yeast mutant mif4, self-assembly of newly imported wild-type subunits is not observed. Functional pre-existing hsp60 complex is required in order to form new, assembled, 14-mer. Subunits imported in vitro are assembled with a surprisingly fast half-time of 5-10 min, indicative of a catalysed reaction. These findings are further evidence that self-assembly may not be the principal mechanism by which proteins attain their functional conformation in the intact cell.  相似文献   

4.
D A Parsell  Y Sanchez  J D Stitzel  S Lindquist 《Nature》1991,353(6341):270-273
Most eukaryotic cells produce proteins with relative molecular masses in the range of 100,000 to 110,000 after exposure to high temperatures. These proteins have been studied only in yeast and mammalian cells. In Saccharomyces cerevisiae, heat-shock protein hsp104 is vital for tolerance to heat, ethanol and other stresses. The mammalian hsp110 protein is nucleolar and redistributes with growth state, nutritional conditions and heat shock. The relationships between hsp110, hsp104 and the high molecular mass heat-shock proteins of other organisms were unknown. We report here that hsp104 is a member of the highly conserved ClpA/ClpB protein family first identified in Escherichia coli and that additional heat-inducible members of this family are present in Schizosaccharomyces pombe and in mammals. Mutagenesis of two putative nucleotide-binding sites in hsp104 indicates that both are essential for function in thermotolerance.  相似文献   

5.
J Ostermann  A L Horwich  W Neupert  F U Hartl 《Nature》1989,341(6238):125-130
Mitochondrial heat-shock protein hsp60 functions in the folding of proteins imported into mitochondria. Folding occurs at the surface of hsp60 in an ATP-mediated reaction, followed by release of the bound polypeptides. We propose that hsp60 catalyses protein folding.  相似文献   

6.
Several vanadium compounds have been known for the hypoglycemic and anticancer effects. However, the mechanisms of the pharmacological and toxicological effects were not clear. In this work, we in- vestigated the potential targets of vanadium in mitochondria. Vanadyl ions were found to bind to mi- tochondria from rat liver with a stoichiometry of 244±58 nmol/mg protein and an apparent dissocia- tion constant (Kd) of (2.0±0.8)×10·16 mol/L. Using size exclusion chromatography, a vanadium-binding protein was isolated and identified to be the 60-kDa heat shock protein (HSP60) by mass spectrometry analysis and immunoassays. Additionally, binding of vanadyl ions was found to result in depolymeri- zation of homo-oligomeric HSP60 (GroEL). HSP60 is an indispensable molecular chaperone and in- volved in many kinds of pathogenesis of inflammatory and autoimmune diseases, e.g. type 1 diabetes. Our results suggested that HSP60 could be a novel important target involved in the biological and/or toxicological effects of vanadium compounds.  相似文献   

7.
By analysis of a temperature-sensitive yeast mutant, a heat-shock protein in the matrix of mitochondria, mitochondrial hsp70 (Ssc1p), is found to be involved both in translocation of nuclear-encoded precursor proteins across the mitochondrial membranes and in (re)folding of imported proteins in the matrix.  相似文献   

8.
Function of DnaJ and DnaK as chaperones in origin-specific DNA binding by RepA   总被引:36,自引:0,他引:36  
S Wickner  J Hoskins  K McKenney 《Nature》1991,350(6314):165-167
Heat-shock proteins are normal constituents of cells whose synthesis is increased on exposure to various forms of stress. They are interesting because of their ubiquity and high conservation during evolution. Two families of heat-shock proteins, hsp60s and hsp70s, have been implicated in accelerating protein folding and oligomerization and also in maintaining proteins in an unfolded state, thus facilitating membrane transport. The Escherichia coli hsp70 analogue, DnaK, and two other heat-shock proteins, DnaJ and GrpE, are required for cell viability at high temperatures and are involved in DNA replication of phage lambda and plasmids P1 and F. These three proteins are involved in replication in vitro of P1 DNA along with many host replication proteins and the P1 RepA initiator protein. RepA exists in a stable protein complex with DnaJ containing a dimer each of RepA and DnaJ. We report here that DnaK and DnaJ mediate an alteration in the P1 initiator protein, rendering it much more active for oriP1 DNA binding.  相似文献   

9.
H Blumberg  P A Silver 《Nature》1991,349(6310):627-630
Heat-shock proteins have been implicated in assembly of protein complexes, correct protein folding and uptake of proteins into organelles. In Escherichia coli, the heat-shock protein DnaJ and the Hsp70 homologue, DnaK, act together to disassemble a protein complex involved in bacteriophage lambda replication. We report the identification of SCJ1, a gene in the yeast Saccharomyces cerevisiae that encodes a homologue of the bacterial DnaJ protein. SCJ1 was identified by a genetic screen in which increased expression of candidate genes results in missorting of a nuclear-targeted test protein. The predicted amino-acid sequence of SCJ1 is 37% identical to the entire E. coli DnaJ protein. Hybridization experiments indicate that there is a family of yeast genes related to SCJ1. These findings suggest that the Hsp70 DnaK-DnaJ interaction is general to eukaryotes.  相似文献   

10.
Regulation of heat shock protein 70 gene expression by c-myc   总被引:4,自引:0,他引:4  
R E Kingston  A S Baldwin  P A Sharp 《Nature》1984,312(5991):280-282
  相似文献   

11.
S J Landry  R Jordan  R McMacken  L M Gierasch 《Nature》1992,355(6359):455-457
The proteins DnaK (hsp70) and GroEL (cpn60) from Escherichia coli are prototypes of two classes of molecular chaperones conserved throughout evolution. The analysis of transferred nuclear Overhauser effects in two-dimensional NMR spectra is ideally suited to determine chaperone-bound conformations of peptides. The peptide vsv-C (amino-acid sequence KLIGVLSSLFRPK) stimulates the ATPase of BiP and Hsc70 (ref. 3) and the intrinsic ATPase of DnaK. The affinity of the vsv-C peptide for DnaK is greatly reduced in the presence of ATP. Here we analyse transferred nuclear Overhauser effects and show that the peptide is in an extended conformation while bound to DnaK but is helical when bound to GroEL. NMR also indicates that the mobility of the peptide backbone is reduced more by binding to DnaK than by binding to GroEL, whereas the side chains are less mobile when bound to GroEL.  相似文献   

12.
Neale MJ  Pan J  Keeney S 《Nature》2005,436(7053):1053-1057
DNA double-strand breaks (DSBs) with protein covalently attached to 5' strand termini are formed by Spo11 to initiate meiotic recombination. The Spo11 protein must be removed for the DSB to be repaired, but the mechanism for removal is unclear. Here we show that meiotic DSBs in budding yeast are processed by endonucleolytic cleavage that releases Spo11 attached to an oligonucleotide with a free 3'-OH. Two discrete Spo11-oligonucleotide complexes were found in equal amounts, differing with respect to the length of the bound DNA. We propose that these forms arise from different spacings of strand cleavages flanking the DSB, with every DSB processed asymmetrically. Thus, the ends of a single DSB may be biochemically distinct at or before the initial processing step-much earlier than previously thought. SPO11-oligonucleotide complexes were identified in extracts of mouse testis, indicating that this mechanism is evolutionarily conserved. Oligonucleotide-topoisomerase II complexes were also present in extracts of vegetative yeast, although not subject to the same genetic control as for generating Spo11-oligonucleotide complexes. Our findings suggest a general mechanism for repair of protein-linked DSBs.  相似文献   

13.
J P McGrath  A Varshavsky 《Nature》1989,340(6232):400-404
Mammalian tumours displaying multidrug resistance overexpress a plasma membrane protein (P-glycoprotein), which is encoded by the MDR1 gene and apparently functions as an energy-dependent drug efflux pump. Tissue-specific expression of MDR1 and other members of the MDR gene family has been observed in normal cells, suggesting a role for P-glycoproteins in secretion. We have isolated a gene from the yeast Saccharomyces cerevisiae that encodes a protein very similar to mammalian P-glycoproteins. Deletion of this gene resulted in sterility of MATa, but not of MAT alpha cells. Subsequent analysis revealed that the yeast P-glycoprotein is the product of the STE6 gene, a locus previously shown to be required in MATa cells for production of a-factor pheromone. Our findings suggest that the STE6 protein functions to export the hydrophobic a-factor lipopeptide in a manner analogous to the efflux of hydrophobic cytotoxic drugs catalysed by the related mammalian P-glycoprotein. Thus, the evolutionarily conserved family of MDR-like genes, including the hlyB gene of Escherichia coli and the STE6 gene of S. cerevisiae, encodes components of secretory pathways distinct from the classical, signal sequence-dependent protein translocation system.  相似文献   

14.
Reduced levels of hsp90 compromise steroid receptor action in vivo   总被引:71,自引:0,他引:71  
  相似文献   

15.
Proteins often function as components of multi-subunit complexes. Despite its long history as a model organism, no large-scale analysis of protein complexes in Escherichia coli has yet been reported. To this end, we have targeted DNA cassettes into the E. coli chromosome to create carboxy-terminal, affinity-tagged alleles of 1,000 open reading frames (approximately 23% of the genome). A total of 857 proteins, including 198 of the most highly conserved, soluble non-ribosomal proteins essential in at least one bacterial species, were tagged successfully, whereas 648 could be purified to homogeneity and their interacting protein partners identified by mass spectrometry. An interaction network of protein complexes involved in diverse biological processes was uncovered and validated by sequential rounds of tagging and purification. This network includes many new interactions as well as interactions predicted based solely on genomic inference or limited phenotypic data. This study provides insight into the function of previously uncharacterized bacterial proteins and the overall topology of a microbial interaction network, the core components of which are broadly conserved across Prokaryota.  相似文献   

16.
N A Costlow  J A Simon  J T Lis 《Nature》1985,313(5998):147-149
Nuclease-hypersensitive sites in chromatin exist at the 5' side of many eukaryotic genes. To gain some understanding of the molecular basis of these hypersensitive sites, we have now examined the pair of sites upstream of the Drosophila hsp70 gene in a series of plasmids that contain deletions in the hypersensitive region and have been transformed into yeast cells. Hypersensitive sites 5' to a Drosophila hsp70 gene are preserved when this gene is introduced into yeast by transformation. We find that a yeast strain containing a plasmid in which the deletion extends through the first hypersensitive site still displays the normal pair of hypersensitive sites, so DNA sequences over which the first hypersensitive site is centred are not required for hypersensitivity at this position and the site can form over a foreign DNA sequence juxtaposed against this deletion end point. Deletions progressing further into the region bracketed by the pair of 5' hypersensitive sites eliminate the first hypersensitive site and alter the downstream site. We propose that the hypersensitive sites are generated through the binding of a protein that renders flanking sequences more accessible to nucleases, perhaps by preventing normal chromatin packaging.  相似文献   

17.
The codon CUG is read as serine in an asporogenic yeast Candida cylindracea   总被引:23,自引:0,他引:23  
Deviations from the universal genetic code have been reported for several microorganisms. Termination codons are used for coding some amino acids in Paramecium, Mycoplasma or Tetrahymena, and in Escherichia coli, the UGA termination codon is used to code for selenocysteine. In mitochondria, the changes of sense codons to termination codons or to codons encoding other amino acids have also been reported. Here we report another example of divergence from the universal code, this time in a non-spore-forming yeast Candida cylindracea, in which the universal codon for leucine, CUG, is used to code for serine. This conclusion is based on the observations that: (1) the amino-acid composition and the partial amino-acid sequences of an extracellular lipase from this yeast agreed with those deduced from the complementary DNA if CUG was assumed to specify serine; and (2) serine, but not leucine, was incorporated into a polypeptide in a cell-free translation system from this yeast in the presence of a synthetic CUG oligomer.  相似文献   

18.
Hereditary spastic paraplegia (HSP) (MIM# 182600, etc.) is a group of heterogeneous neurodegenerative disorders, characterized by lower limb spasticity, hy- perreflexia, progressive spastic gait abnormalities and an extensor-plantar response[1]. The genot…  相似文献   

19.
选择大肠癌手术切除癌组织标本56份及同组病例距癌组织外缘 3cm内的癌旁组织标本20份,采用免疫组织化学Elivision Plus二步法检测正常大肠黏膜、癌旁组织、大肠腺瘤和大肠癌中热休克蛋白60(HSP60)的表达.结果HSP60在正常大肠黏膜、癌旁组织、大肠腺瘤、大肠癌中表达阳性率分别为27.78%,40%,77.78%,80.36%.各组间比较,HSP60表达的阳性率具有显著性差异(χ2=23.314,P=0.000).HSP60在大肠癌中的表达可能在大肠癌发生发展中发挥作用,特别在大肠癌恶性演进中以及预后预测中具有重要意义,其可能可以作为独立的生物标志物.  相似文献   

20.
Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae   总被引:11,自引:0,他引:11  
P E Thorsness  T D Fox 《Nature》1990,346(6282):376-379
The migration of genetic information from ancestral prokaryotic endosymbionts into eukaryotic nuclei is thought to have had an important role in the evolution of mitochondria and chloroplasts. Here we describe an assay for the detection of movement of DNA between mitochondria and the nucleus in yeast. Because recombinant plasmid DNA replicates after transformation into mitochondria of yeast strains lacking endogenous mitochondrial DNA we were able to propagate the nuclear genetic marker URA3 in mitochondria. As expected, the wild-type URA3 gene in mitochondria failed to complement the uracil auxotrophy (Ura-) caused by a nuclear ura3 mutation. But selection of Ura+ prototrophs from a Ura- strain carrying URA3 on a plasmid in its mitochondria enabled us to detect plasmid movement to the nucleus. Conversely, as the plasmid used also contained the mitochondrial gene COX2 required for respiratory growth, we were able to set up corresponding selections to detect migration of DNA from the nucleus to the mitochondria. Our results show that, in yeast, DNA escapes from mitochondria and appears in the nucleus at a surprisingly high frequency (approximately 2 x 10(-5) per cell per generation). But the rate at which DNA makes the journey in the opposite direction--nucleus to mitochondria--is apparently at least 100,000 times less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号