首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A D Campbell  M W Long  M S Wicha 《Nature》1987,329(6141):744-746
There is substantial evidence that the haematopoietic microenvironment is crucial to the growth and differentiation of haematopoietic cells. This microenvironment is composed of stromal cells, soluble factors and extracellular matrix (ECM). We have shown that a complex extract of bone marrow ECM can stimulate the growth and differentiation of haematopoietic cells in vitro. Furthermore, the use of inhibitors or stimulators of ECM synthesis in long-term marrow culture affects cell proliferation. On a molecular level, however, the interactions between ECM and haematopoietic cells are not well understood. We have investigated the adhesion between specific bone marrow ECM components and haematopoietic cells, and found a protein, 'haemonectin', of relative molecular mass 60,000 in bone marrow ECM which is a lineage- and organ-specific attachment molecule for cells of granulocyte lineage. This specificity distinguishes haemonectin from previously described adhesion proteins which have a wider tissue distribution and cell type specificity.  相似文献   

5.
Pluripotency of mesenchymal stem cells derived from adult marrow   总被引:6,自引:0,他引:6  
We report here that cells co-purifying with mesenchymal stem cells--termed here multipotent adult progenitor cells or MAPCs--differentiate, at the single cell level, not only into mesenchymal cells, but also cells with visceral mesoderm, neuroectoderm and endoderm characteristics in vitro. When injected into an early blastocyst, single MAPCs contribute to most, if not all, somatic cell types. On transplantation into a non-irradiated host, MAPCs engraft and differentiate to the haematopoietic lineage, in addition to the epithelium of liver, lung and gut. Engraftment in the haematopoietic system as well as the gastrointestinal tract is increased when MAPCs are transplanted in a minimally irradiated host. As MAPCs proliferate extensively without obvious senescence or loss of differentiation potential, they may be an ideal cell source for therapy of inherited or degenerative diseases.  相似文献   

6.
Recombinant retroviral genomes encoding a chromosomal human beta-globin gene have been used to transduce murine haematopoietic stem cells in vitro. After permanent engraftment of lethally irradiated recipients with the transduced cells, the human beta-globin gene is expressed at significant levels only within the erythroid lineage. These results indicate that it is possible to obtain stable expression of exogenous chromosomal DNA sequences introduced into mature haematopoietic cells in vivo via stem cell infection, and that human disorders of haemoglobin production may be more feasible candidates for somatic cell gene therapy than previously suspected.  相似文献   

7.
8.
S Huang  L W Terstappen 《Nature》1992,360(6406):745-749
Haematopoietic stem cells are a population of cells capable both of self renewal and of differentiation into a variety of haematopoietic lineages. Enrichment techniques of human haematopoietic stem cells have used the expression of CD34, present on bone marrow progenitor cells. But most CD34+ bone marrow cells are committed to their lineage, and more recent efforts have focused on the precise characterization of the pluripotent subset of CD34+ cells. Here we report the characterization of two distinct subsets of pluripotent stem cells from human fetal bone marrow, a CD34+, HLA-DR+, CD38- subset that can differentiate into all haematopoietic lineages, and a distinct more primitive subset, that is CD34+, HLA-DR-, CD38-, that can differentiate into haematopoietic precursors and stromal cells capable of supporting the differentiation of these precursors. These data represent, to our knowledge, the first identification of a single cell capable of reconstituting the haematopoietic cells and their associated bone marrow microenvironment.  相似文献   

9.
Although it is generally agreed that stromal cells are important in the regulation of haematopoietic cell development, the origin of these phenotypically diverse cells has been a subject for debate for more than 50 years. Data which support the concept of a separate origin for the haematopoietic stem cell and the marrow stroma are derived from cytogenetic or enzyme marker studies of explanted and expanded stromal cells grown under conditions that do not allow haematopoiesis in vitro. Recent evidence in man and in mouse suggesting that the stromal cells capable of transferring the haematopoietic microenvironment in vitro are transplantable seemingly questions this dichotomy, one interpretation being the existence of a common haematopoietic/stromal 'stem cell'. We used in situ hybridization to discriminate donor cells from host in blood and bone marrow samples obtained from patients with functioning sex-mismatched but HLA-identical allografts. Without exception, marrow-derived stromal cells that proliferate in long-term cultures were found to be of host genotype, whereas the macrophage component of the adherent layer in these cultures originated from the donor.  相似文献   

10.
Clonal origin of haematopoietic colonies in the postnatal mouse liver   总被引:3,自引:0,他引:3  
J Rossant  K M Vijh  C E Grossi  M D Cooper 《Nature》1986,319(6053):507-511
The liver of the neonatal mouse continues to show haematopoietic activity for up to 2 weeks after birth and morphological analysis has shown that this activity becomes focused in discrete haematopoietic colonies by the end of the first week postnatal. Furthermore, each colony contains cells of one haematopoietic lineage only, that is, erythroid, myeloid or pre-B-lymphoid cells. This pattern of differentiation suggests that each colony is derived from a single committed precursor cell, which, if true, would represent the first demonstration of non-mixed haematopoietic colonies in normal development and would provide a useful system for studying the factors affecting the clonal diversity of haematopoietic stem cells and their lineage-committed progeny. Here we have analysed the haematopoietic foci in the liver of neonatal mouse chimaeras, using a newly developed ubiquitous in situ cell marker system which clearly demonstrates the clonal origin of these colonies.  相似文献   

11.
JNK phosphorylates paxillin and regulates cell migration   总被引:1,自引:0,他引:1  
Huang C  Rajfur Z  Borchers C  Schaller MD  Jacobson K 《Nature》2003,424(6945):219-223
  相似文献   

12.
E Spooncer  B I Lord  T M Dexter 《Nature》1985,316(6023):62-64
Stromal cells play a critical role in haematopoiesis, both in a permissive and, probably, in a directive manner. Study of the interactions between stromal cells and haematopoietic stem cells, however, is difficult to perform using whole bone marrow, in which stem cells are indistinguishable from precursor cells and maturing haematopoietic cells, and where stromal and haematopoietic cells co-exist in a heterogeneous mixture. We have purified primitive haematopoietic spleen colony-forming cells (CFU-S) using fluorescence-activated cell sorting (FACS) and produced CFU-S populations which approach 100% purity (ref. 6 and B.I.L. and E.S., in preparation). This cell population is devoid of significant stromal cells and mature haematopoietic cells. Here, we report that when purified CFU-S are seeded onto a stromal adherent layer in vitro, foci of haematopoietic cells develop within the stroma followed by production of a wave of maturing and mature progeny. However, self-renewal of CFU-S does not occur and haematopoietic activity rapidly declines, indicating that caution should be applied in the use of highly purified stem cells for human bone marrow transplantation.  相似文献   

13.
T Franz  J L?hler  A Fusco  I Pragnell  P Nobis  R Padua  W Ostertag 《Nature》1985,315(6015):149-151
The study of retrovirus-induced leukaemias in mice is a powerful tool for the elucidation of the normal regulation of the haematopoietic system. The acute murine spleen focus-forming viruses (SFFV) can be classified according to the haematopoietic lineage on which they exert their effects in the adult mouse. Here we report a new SFFV isolate, the AF-1 virus, with the novel ability to transform cells of the mononuclear phagocyte lineage. The virus was isolated from sarcomas that were induced on passage of a cloned Friend helper virus (F-MuLV, 643/22F) in newborn BALB/c mice. We have cloned the transforming defective subunit of the AF-1 viral complex in NRK cells and isolated several subclones. Analysis of the proviral genome in two non-producer cell clones reveals that AF-1 virus contains Harvey v-ras-specific sequences (Fig. 1). Thus, AF-1 virus is closely related to Harvey murine sarcoma virus (Ha-MSV), and is, at present, the only tool by which permanent cell lines can be obtained from mononuclear phagocytes in the mouse.  相似文献   

14.
D A Williams  M Rios  C Stephens  V P Patel 《Nature》1991,352(6334):438-441
The self-renewal and differentiation of haematopoietic stem cells occurs in vivo and in vitro in direct contact with cells making up the haematopoietic microenvironment. In this study we used adhesive ligands and blocking antibodies to identify stromal cell-derived extracellular matrix proteins involved in promoting attachment of murine haematopoietic stem cells. Here we report that day-12 colony-forming-unit spleen (CFU-S12)5 cells and reconstituting haematopoietic stem cells attach to the C-terminal, heparin-binding fragment of fibronectin by recognizing the CS-1 peptide of the alternatively spliced non-type III connecting segment (IIICS) of human plasma fibronectin. Furthermore, CFU-S12 stem cells express the alpha 4 subunit of the VLA-4 integrin receptor, which is known to be a receptor for the CS-1 sequence, and monoclonal antibodies against the integrin alpha 4 subunit of VLA-4 block adhesion of CFU-S12 stem cells to plates coated with the C-terminal fibronectin fragment. Finally, polyclonal antibodies against the integrin beta 1 subunit of VLA-4 inhibit the formation of CFU-S12-derived spleen colonies and medullary haematopoiesis in vivo following intravenous infusion of antibody-treated bone marrow cells.  相似文献   

15.
S F Tsai  D I Martin  L I Zon  A D D'Andrea  G G Wong  S H Orkin 《Nature》1989,339(6224):446-451
Genes expressed in erythroid cells contain binding sites for a cell-specific factor believed to be an important regulator for this haematopoietic lineage. Using high-level transient expression in mammalian cells, we have identified complementary DNA encoding the murine protein. The factor, a new member of the zinc-finger family of DNA-binding proteins, is restricted to erythroid cells at the level of RNA expression and is closely homologous between mouse and man.  相似文献   

16.
Bone and haematopoietic defects in mice lacking c-fos.   总被引:26,自引:0,他引:26  
  相似文献   

17.
B lymphocytes originate from pluripotential haematopoietic stem cells and differentiate into immunoglobulin (Ig)-producing cells. B-cell lineage differentiation is accompanied by two types of immunoglobulin gene rearrangements--rearrangement of V, D and J gene segments to create a functional V gene and rearrangement of CH genes for heavy-chain switching. These results, however, have been obtained mainly by analysis of immunoglobulin gene organization of myeloma cells. Baltimore and his colleagues have established Abelson murine leukaemia virus (A-MuLV)-transformed cell lines and found a few lines capable of carrying out kappa-gene rearrangement or undergoing isotype switching during in vitro culture. To study early B-cell lineage differentiation events, we have now also established A-MuLV-transformed cell lines which are capable of differentiating from mu- to mu+ and of undergoing continuing rearrangement of heavy-chain genes in culture. Analysis of immunoglobulin gene organization of these transformed cells revealed that mu- cells have already undergone DNA rearrangements involving JH segments but an additional rearrangement of JH segments is required for initiation of mu-chain synthesis. Southern blot analysis of the DNA and two-dimensional gel electrophoresis of intracytoplasmic mu-chain show that mu-chain diversity with respect to antigen specificity may be generated during this second rearrangement process. As no rearrangement of light-chain genes takes place in these cells, this implies that light-chain gene rearrangement requires some further change, or a different enzyme.  相似文献   

18.
Bell JJ  Bhandoola A 《Nature》2008,452(7188):764-767
There exists controversy over the nature of haematopoietic progenitors of T cells. Most T cells develop in the thymus, but the lineage potential of thymus-colonizing progenitors is unknown. One approach to resolving this question is to determine the lineage potentials of the earliest thymic progenitors (ETPs). Previous work has shown that ETPs possess T and natural killer lymphoid potentials, and rare subsets of ETPs also possess B lymphoid potential, suggesting an origin from lymphoid-restricted progenitor cells. However, whether ETPs also possess myeloid potential is unknown. Here we show that nearly all ETPs in adult mice possess both T and myeloid potential in clonal assays. The existence of progenitors possessing T and myeloid potential within the thymus is incompatible with the current dominant model of haematopoiesis, in which T cells are proposed to arise from lymphoid-. Our results indicate that alternative models for lineage commitment during haematopoiesis must be considered.  相似文献   

19.
20.
Haematopoietic stem cells (HSCs) can convert between growth states that have marked differences in bioenergetic needs. Although often quiescent in adults, these cells become proliferative upon physiological demand. Balancing HSC energetics in response to nutrient availability and growth state is poorly understood, yet essential for the dynamism of the haematopoietic system. Here we show that the Lkb1 tumour suppressor is critical for the maintenance of energy homeostasis in haematopoietic cells. Lkb1 inactivation in adult mice causes loss of HSC quiescence followed by rapid depletion of all haematopoietic subpopulations. Lkb1-deficient bone marrow cells exhibit mitochondrial defects, alterations in lipid and nucleotide metabolism, and depletion of cellular ATP. The haematopoietic effects are largely independent of Lkb1 regulation of AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling. Instead, these data define a central role for Lkb1 in restricting HSC entry into cell cycle and in broadly maintaining energy homeostasis in haematopoietic cells through a novel metabolic checkpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号