首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
基于横风作用下高速列车流场的非定常特性,建立了横风-列车-桥隧模型进行仿真计算,并通过1∶8列车动模型试验验证数值方法的准确性。随后研究横风条件下列车突出隧道时,隧道内外瞬态气动压力、气动荷载变化及流场特性,揭示了横风-列车-隧道之间的相互作用机理。研究结果表明:随着横风风速的增大,压力逐渐减小,但压力随时间的变化规律相似;横风对隧道出口处及隧道外监测点处的压力梯度有明显的影响,对于隧道内的监测点几乎没有影响;随着横风风速增大,隧道外背风侧正压峰值随风速增大略有减小,迎风侧正压峰值基本保持不变,背风侧负压峰值减小速率大于迎风侧;横风对列车突出隧道运行过程的压力波动影响有限,在横风风速为20 m/s时,隧道外界流场影响隧道内气动压力的范围不超过20 m。同种横风条件下,迎风侧、背风侧监测点处压力时程变化规律不相同,压力梯度峰值出现的位置也不同,且位于列车同侧越靠近地面的监测点处压力峰值及压力梯度峰值绝对值越大;横风下,气流经过车-桥系统时,在桥底部、列车背风侧顶部及底部发生明显的流动分离现象,导致隧道外车体两侧的压差大于隧道内车体两侧压差。  相似文献   

2.
高铁线路隧道-桥梁-隧道路段常伴随强烈的横风,列车行驶至隧道与桥梁连接段时常常受到横风的突然冲击,严重影响了列车的行车安全性。基于计算流体力学RNG湍流模型和多孔介质理论,建立列车-隧道-桥梁-风屏障三维CFD数值模型和风-车-轨-桥动力耦合分析模型,研究了高速列车通过隧道-桥梁-隧道路段过程中列车的气动荷载和行车安全指标的变化特性。结果表明:桥隧相连段设置风屏障后,各节车厢的气动荷载突变幅值显著降低,降幅达50%以上,其中横向力和倾覆力矩受风屏障的影响最为显著,降幅高达88%以上;设置风屏障后列车行车安全指标显著降低,迎风侧和背风侧各轮对(除了头车1、3号轮对外)的安全指标波动幅度相同;头车的安全指标对整个列车行车安全性起控制作用,尤其是头车转向架前轮(即1、3号轮对)的;列车由隧道驶入桥梁过程中的行车安全性较由桥梁驶入隧道过程的小。  相似文献   

3.
根据测风塔和当地气象站数据,对江底河大桥桥址处深切峡谷的风场特性进行研究.基于数据统计分析得到桥址处风场的平均风速、风向、湍流强度、湍流积分尺度和湍流的功率谱密度函数.结果表明:该桥所在的深切峡谷地形对风向有锁定作用、对风速有加速作用、并且对各个风向下的湍流特性有明显的影响;深切峡谷顺风向湍流强度与平均速度的关系用反比例型函数拟合,拟合效果良好且高风速下接近规范值;竖风向湍流强度明显高于规范推算值.顺风向实测风谱与Kaimal谱相差较大而与von Karman谱吻合较好;竖风向实测风谱明显大于Panofsky风谱而与von Karman谱比较接近.横风向实测风谱与Panofsky谱、von Karman谱都比较接近.  相似文献   

4.
为研究山区风场近地层风速的脉动特性,利用安装在青草背长江大桥上的高频风速仪对桥址处风场进行为期8个月的全程监控.根据实测风速序列分析了在桥址处平均风速、风向、湍流强度、阵风因子和功率谱的统计特征,并针对山区风阵风因子随湍流强度变化关系以及不同计算时距条件下阵风因子的换算关系进行了探讨.研究结果表明:受局部热力环流的影响,桥址风场具有明显周期性变化特征;高风速下顺风向湍流强度及竖向风速相对湍流强度大于桥梁抗风设计规范建议值,而横风向相对脉动强度则比桥梁抗风规范值小;阵风因子随阵风计算时距的变换规律可以用对数高斯函数加以描述;山区复杂地形、地貌导致风速中湍流成分发育更为充分,湍流高频能量相对较大,脉动风速谱在高频段比规范推荐风谱大,低频段比规范推荐谱小.  相似文献   

5.
采用计算流体力学(CFD)方法建立多个数值模型,通过与风洞试验的对比分析验证了数值模拟结果的可靠性,较系统地研究并详细分析了峡谷长度、山顶间距、山脉坡度3种地貌因素对平均风加速效应的影响.结果表明:山脉顶部加速效应主要受山脉坡度的影响,在近地面内坡度越大加速效应越明显;峡谷内部加速效应受多种地貌因素影响且变化趋势较为复杂,必须考虑峡谷侧坡边界层的影响和流动的三维效应,当峡谷长度越短、山顶间距越小、山脉坡度越大时,迎风谷口处在近地面内的加速效应越明显.最后计算出典型峡谷的风压地形修正系数,并与我国建筑结构荷载规范进行对比.  相似文献   

6.
采用基于CFD和CSD的准静态耦合方法对横风作用下货车篷布结构强度进行分析。首先建立横风作用下货车篷布数值模拟计算模型,得到不同运行工况下货车篷布表面压力分布;随后建立篷布索膜结构强度计算模型,以篷布表面压力分布为加载载荷,运用非线性有限元分析方法对不同运行工况下的篷布强度进行数值模拟计算。研究结果表明:货车以速度120 km/h在大风地区运行,当横风风速小于41.4 m/s时,采用双层焊接结构的无网篷布所受最大主应力小于篷布许用应力;当横风风速小于54 m/s时,采用双层焊接结构的有防风网篷布所受最大主应力小于篷布许用应力,满足篷布安全运行要求;篷布顶面和篷布网眼位置的最大位移和最大主应力随着货车运行速度和横风风速的增加而增大,横风风速对篷布最大位移和最大主应力的影响大于货车速度对其的影响。  相似文献   

7.
针对山区地形地表类别不易确定、风环境复杂的问题,结合山西省禹门口黄河斜拉桥的实际工程,利用自行开发的桥梁风场特性分析系统,对桥址处一年多实测风速数据进行分析计算;并基于"数值风洞"模拟技术,采用Realizable和SST湍流模型,按有实桥结构和无实桥结构2种情况建模,模拟了7种工况下桥位及其周边的风场,得到了典型的西部山区峡谷风场的特点和规律。结果表明:受峡谷风效应影响,桥位风速增加;气流攻角在-9°~8°范围内,比平原地区大;风剖面应通过实测风速数据拟合,不能直接套用规范;湍流度和阵风因子小于一般气象强风条件下的值。  相似文献   

8.
为研究桥上动车组穿越复杂峡谷地形时的横风气动特性,本文以CRH6型动车组为研究对象,基于三维、粘性、不可压缩的N-S方程和k-ε湍流模型,采用滑移网格技术,耦合高架桥、横风和车速,计算复杂三维峡谷地形下动车组的气动载荷.研究结果表明:列车表面压力在流线型头部有显著变化,压力最大值出现在列车头部鼻端点区域;随着车速和横风...  相似文献   

9.
基于三维、不可压、定常N a v i e r-S t o k e s方程和k-ε双方程湍流模型,采用零厚度壁面模拟货车篷布,建立横风作用下篷布内外空间三维流场计算模型,对铁路货车D型篷布所受气动升力进行数值模拟计算;分析货车在大风地区运行时,横风风速、货物装载高度、货物装载形状以及货物沉降对其气动力的影响,得到篷布在不同工况下所受气动载荷。研究结果表明:当列车速度一定时,篷布所受到的气动升力系数近似与横风风速成正比;篷布所受气动升力随着货车装载高度的增加而显著增加,超车帮为0.7 5 m时篷布受到的升力系数比超车帮为0.4 5 m时大2 8%;超车帮装载(圆弧顶)时,篷布受到的气动升力系数比不超车帮装载(三角型顶)时大2 8.3%;当篷布和货物之间间隙处于0.0 2~0.1 2 m之间时,随间隙增大,篷布所受气动升力增大,间隙为0.1 2 m时的篷布气动升力系数比间隙为0.0 2 m时大1 4.5%;数值计算与试验结果相对误差7.1%,证明了数值计算方法的正确性。  相似文献   

10.
采用数值计算软件FLUENT研究障碍物的尺寸、障碍物与山坡坡底的距离对山丘风场的影响.根据计算结果绘制山顶上方50m处的湍流强度和速度变化图,山丘表面风速值线图以及来流方向分风速等值线图.分析结果表明:障碍物越高,距离山坡坡底越近,山顶风速减小幅度越大,越不稳定;山丘上游存在障碍物时,迎风坡和背风坡均出现低速区;障碍物距离山坡坡底较近时,迎风面上还出现了回流现象.迎风面、背风面的速度变化较大,不适合安装风力机;山丘两侧风速一直变化不大,比较适合安装风力机.  相似文献   

11.
山区桥梁桥址风环境试验研究   总被引:2,自引:0,他引:2  
北盘江特大桥位于地形特殊的山区.通过模拟桥址地形的风洞试验,确定桥梁设计基准风速和相关的风特性参数,使得到的风速真正反映桥址处风的实际状况.试验结果表明:北盘江特大桥桥址处无明显风速放大效应;根据荷载等效原则,桥面设计基准高度可采用统一的等效桥面高度来描述;当横桥向来流,且与山谷走向一致时,桥面高处的水平方向和竖向脉动风功率谱密度在脉动风的振动频率的低频区域,可以分别近似采用Kaimal谱和Panofsky谱,  相似文献   

12.
依据某大跨径拱桥全桥气弹模型风洞试验,研究了不同风偏角下结构的横向风荷载响应。试验对模型的动力特性和静力刚度进行了测定,并采用紊流场模拟桥址处的风环境,进行了0°~90°风偏角下不同风速的试验。试验验证了该拱桥的气动安全性。数据分析结果表明:当风向为正横桥向时,桥梁结构的风作用处于最不利状态,结构关键位置随风偏角的增大而增大;斜风向下桥梁实际风荷载效应比采用三角函数分解方法叠加得到结构风荷载效应更为不利。  相似文献   

13.
国内山区峡谷区域的桥梁一般具有高墩大跨的特点,作用在主梁及墩上的风荷载会很大,确定桥梁的设计基准风速与风荷载就变得十分重要.结合某连续刚构箱梁桥算例,对比《公路桥涵设计通用规范》和《公路桥梁抗风设计规范》中对主梁横桥向风荷载计算的规定,指出两部规范的差异,为山区峡谷桥梁抗风设计提供理论依据;通过联系现有研究和规范分析了设计基准风速的确定,并结合某桥算例分析了各自算法的合理性,从而确定采用现有研究的方法计算山区桥梁设计基准风速,并按《公路桥梁抗风设计规范》规定计算山区桥梁的静阵风荷载更为合理.  相似文献   

14.
为了对大桥抗风评估提供可靠依据,结合东海某大跨度悬索桥的风场监测系统,对该桥桥面及桥塔处的风速进行长期监测,采用统计方法及频谱分析对桥位处风速随高度变化、湍流强度、阵风因子以及脉动风的功率谱密度等进行分析.研究结果表明:无量纲幂指数在低风速时较不稳定,随风速增大而减小并趋于平稳,高风速下其统计均值为0.161,大于规范建议值;湍流强度亦随风速增大而减小并趋于平稳,可采用指数函数加以拟合,桥面高度处强风的顺风向、横风向及竖向湍流强度均值分别为0.180 6,0.156 4及0.078 7,亦大于规范建议值;阵风因子与湍流强度之间近似呈线性关系;强风的水平及竖向风谱与规范谱吻合较好,但实测谱值在低频段偏低.  相似文献   

15.
大跨度桥梁非线性静力抗风研究   总被引:3,自引:0,他引:3  
在传统的桥梁风荷载计算理论的基础上,考虑到大跨度悬索桥的非线性特点,提出了大跨度悬索桥在风荷载作用下的非线性静力失稳理论,推导了适合计算的非线性刚度矩阵,并开发了大跨度桥梁的非线性静力抗风计算程序,通过实例分析验证。根据该理论分析和计算,本文对大跨度悬索桥的静力抗风研究提出了新的思路和建议。  相似文献   

16.
香港汀九大桥抖振响应时程分析   总被引:4,自引:2,他引:4  
分析紊流风引起香港汀九大跨度斜拉桥的抖振响应。该斜拉桥是三塔四跨结构,位于台风地区。在分析中我们把紊流风化为一系列沿主梁轴线作用的速度时程点,然后把抖振力表示为一系列沿主梁轴线分布并作用在主梁上的荷载时程点,所有时程点实际上都是多维互相关随机过程,而自激力则由脉冲响应函数与主梁位移的卷积给出。本文编制了在时域中分析紊流风引起结构抖振的三维非线性有限元程序,把该三塔四跨四索面双桥面斜拉桥简化为一个空  相似文献   

17.
在调查45 年来福建登陆台风发生频率、出入境方向、路径、最大风速等特性的基础上,提出基于历年台风实测风速统计的台风极端风速估算法, 并给出经验公式, 进而合理确定沿海吊桥的设计风速  相似文献   

18.
针对大跨径斜拉桥对风荷载作用十分敏感的特点,分析了斜拉索风荷载的不同计算方法的差异,并以苏通长江公路大桥为例比较了不同计算方法对关键截面响应的影响.分析表明,对于大跨径斜拉桥,斜拉索上的风荷载计算方法对关键截面的响应影响较大;横桥向风作用下,在不考虑斜拉索设计风速的误差的前提下,可将斜拉索上风荷载平均分配到其端部;顺桥向风荷载作用下,则斜拉索上风荷载应直接作用在拉索分段的节点上。  相似文献   

19.
异形拱桥作为景观桥可以很好满足人们的景观需求,但同时它的受力形式也复杂多样,为了研究某空间Y型拱桥在施工阶段以及成桥阶段的受力特点,采用有限元分析软件建立全桥的数值模型。在考虑结构所受强风荷载的基础上,主要研究该结构在各个施工阶段以及成桥阶段关键部位的内力和应力,然后对结构进行动力和稳定性分析。结果表明: 该桥所受风荷载较为显著,双拱侧拱脚因为倾角的原因弯矩值较大,结构的受力均满足规范要求。通过对该拱桥的相关力学行为分析,研究结论可以给未来类似结构的设计和施工提供参考。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号