首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了兼顾弱磁性矿物高梯度磁选的品位和回收率,提出一种新的高梯度磁选方法—磁流体耦合高梯度磁选,该方法将顺磁性磁流体引入到高梯度磁选中产生磁排斥力来扩大有用磁性矿物和磁性脉石矿物的受力差异,减少进而消除二者之间的竞争捕集,大幅提高分选的选择性。以攀西钛铁矿为试验对象,MnCl2溶液为磁流体,开展磁流体耦合高梯度磁选试验和相关机理研究。研究结果表明:磁流体能显著提高钛铁矿的选择性,经一次分选后磁性产物TiO2品位达到39.70%,远比工业常规高梯度磁选获得的TiO2品位高;磁性矿物和磁性脉石的受力差异由磁流体的磁化率调控,与磁场力HgradH无关,能够实现品位和回收率的双向同步强化,最佳的磁流体磁化率应接近磁性脉石的磁化率;磁流体耦合高梯度磁选能够强化弱磁性矿物按磁化率精细分离,突破传统高梯度磁选无法兼顾品位和回收率的技术瓶颈,具有广阔的应用前景。  相似文献   

2.
为了发展脉动高梯度磁选技术,已制造一种实验室型脉动高梯度磁选机(PHGMS)。对其分选性能进行了试验。试验表明,脉动高梯度磁选能显著提高磁性产品品位和避免介质堵塞。本研究测定了脉动高梯度磁选中的脉动流体特性曲线,建立了估算脉动高梯度磁选磁性产品品位的公式。  相似文献   

3.
脉动高梯度磁选是一种分离细粒弱磁性成分的有效方法,它能显著地减少非磁性物料的夹杂.作者采用脉动高梯度磁选对磁黄铁矿与锡矿的分离进行了研究,获得了良好的分选效果,磁黄铁矿的脱除率达88.12%,Zn和Sn的损失率小于3%.  相似文献   

4.
本文对文峪金矿铜铅混合精矿进行了振动高梯度磁选分离铜铅的试验研究,并由此提出了浮-磁-重联合流程选矿新工艺,同时对新工艺进行了试验研究,取得很好的试验指标。研究结果表明,振动高梯度磁选的采用有可能使原现场整个分选工艺产生根本性的变革,从而提高生产指标,增加经济效益。  相似文献   

5.
本文进行了振动高梯度磁选分离铜钼的试验研究,初步探讨了将高梯度磁选应用到有色金属选矿领域的可能性。对江西德兴铜矿选厂的铜钼混合精矿进行了试验,取得较好的试验指标。试验结果及理论分析表明:分选前的脱药,分选中适度的振动以及添加合适的分散剂,对提高铜钼分离的分选效率,有着十分重要的作用。  相似文献   

6.
本文介绍了周期式脉动高梯度磁选机的工作原理,从理论上分析了冲程冲次对脉动高梯度磁选指标的影响,用黑钨矿和赤铁矿进行了验证试验,证实了脉动对消除脉石的机械夹杂和提高磁性精矿品位有重要作用。通过理论分析和试验研究,提出了脉动高梯度磁选的捕集图。  相似文献   

7.
引言分析矿石中强磁性矿物的含量,确定矿石磁选可选性指标,检查磁选机的工作情况,对磁选厂的磁性产品进行磁性分析,都需要测定出强磁性矿物的含量。现在测定的方法基本是用磁选管分离计算得到含量值。用磁选管测定强磁性矿物含量,要通过试样准备、磁选管分离、干燥、称重和计算等程序,该法工序繁琐、所费时间长、设备投资高。  相似文献   

8.
采用连续离心分离技术回收细铁尾矿中铁   总被引:2,自引:0,他引:2  
采用SLon实验型连续式离心机(简称SLon实验型离心机),以高梯度磁选细粒赤铁矿尾矿得到的磁性产物(52.42%Fe)为试样,在给料体积速率为(24.5±0.4)L/min、给料固体浓度为20%和水束流冲击压力为0.45MPa的条件下,研究转鼓转速和水束流往复速度对连续离心分离指标的影响。研究结果表明:转鼓转速和水束流往复速度分别通过改变颗粒受离心力和流膜流动特性影响分离结果;当转鼓转速为450r/min和水束流往复速度为36mm/s时,铁精矿的铁品位和铁回收率分别为62.32%Fe和65.02%,说明应用SLon离心机分离提纯高梯度磁选细粒赤铁矿尾矿得到的磁性产物,再富集效果明显。  相似文献   

9.
高梯度磁分离的特征及应用   总被引:1,自引:0,他引:1  
系统地研究了高梯度磁分离过程的分离特征。随着磁场强度的增大,磁分离效率提高;在相同的磁场强度下,磁性强样不同的粒子分离效率具有显著的差异,弱磁性的粒子要在很强的磁场下才能得到分离;对于同种特质,颗粒大的粒子比颗粒小的粒子更易分离,含有铁、铜等金属氧化物的废水可通过高梯度磁分离器直接过滤进行处理,而通过加入“磁性种子”进行强化,高梯度磁分离技术可以有效地处理有机工业废水。  相似文献   

10.
介绍新型斜环永磁高梯度磁选机的基本结构,分析磁性矿粒在复合力场中的受力和捕获机理,测试该设备对某铁矿尾矿的磁选效果。该磁选机为永磁磁系,分选环为倾斜配置且分选环倾斜角度和转速可调;分选时,磁介质在底部磁场区捕收磁性矿粒,旋转到顶部非磁场区冲洗卸矿。研究结果表明:调节分选环的倾斜角度可改变磁性矿粒所受各作用力的大小,从而调节磁选粒度的下限和磁选作业的回收率;当原矿铁品位为17.81%时,经一次磁选可获得回收率为65.05%、全铁品位为29.53%的磁选精矿。该磁选机设计合理、节能,可实现连续给矿、分选和排矿。  相似文献   

11.
高梯度磁分离的特性及应用   总被引:6,自引:0,他引:6  
系统地研究了高梯度磁分离过程的分离特性. 随着磁场强度的增大, 磁分离效率提高;在相同的磁场强度下,磁性强弱不同的粒子分离效率具有显著的差异,弱磁性的粒子要在很强的磁场下才能得到分离;对于同种物质,颗粒大的粒子比颗粒小的粒子更易分离. 含有铁、铜等金属氧化物的废水可通过高梯度磁分离器直接过滤进行处理,而通过加入"磁性种子"进行强化, 高梯度磁分离技术可以有效地处理有机工业废水.  相似文献   

12.
对河北某地微细粒级的赤铁矿分别用阶段磨矿-重选-弱磁选-高梯度磁选-阴离子反浮选和阶段磨矿-弱磁选-高梯度强磁选-反浮选试验流程进行选别试验,前者所得的选矿指标为,精矿产率为44.32%,铁品位为62.88%,铁回收率为79.84%。后者的试验指标为,精矿产率为43.29%,品位为65.32%,铁回收率为80.43%。  相似文献   

13.
推导并建立了CQD-1型磁选机振动系统的运动学方程,研究分析了振动高梯度磁选过程中矿粒所受的各种作用力以及机械振动松散机理,提出了确定最佳振动参数─—激振电流I的方法。  相似文献   

14.
高梯度磁分离器中填料的研究   总被引:7,自引:0,他引:7  
高梯度磁分离是一种新颖高效的分离方法文中阐述了该分离方法的作用原理及影响因素,并系统地研究了过滤器填料对磁场强度、进而对分高效果的影响.结果表明,选用磁性较强的材料作过滤填料对分离更为有效,但实际应用中以磁性不锈钢为宜;填料越细、填充度越高,分离效果越好,但一般填充度以5%~10%为宜  相似文献   

15.
本文介绍了某难选微细粒氧化锰矿试用最近发展起来的新工艺——振动高梯度强磁选所取得的成果;文末并对试验结果进行了讨论。  相似文献   

16.
高铝硅氰化渣中铁回收工艺   总被引:1,自引:0,他引:1  
研究一种处理磁选前高铝硅氰化渣的新工艺。采用复合添加剂焙烧-水浸-磁选工艺对一种铁品位为27.69%(质量分数),SiO2含量为23.9%,Al2O3含量为6.35%的高铝硅氰化渣进行杂质与铁分离的研究。研究结果表明:在最佳焙烧条件下,当水浸温度为60℃,液固比为15:1,水浸时间为5 min,转速为20 r/min,在激磁电流为2 A时,可获得铁品位57.11%,铁的回收率为72.58%的铁精矿。铁的品位和回收率都比单纯的复合添加剂还原焙烧-磁选法所获得的铁精矿的指标高,铁的品位提高了10%左右,回收率提高了30%左右。X线荧光(XRF),X线衍射(XRD)及能谱(EDS)分析研究结果表明:经水浸后,复合添加剂焙烧过程中所产生的可溶性复杂杂质化合物被洗除,不溶性物质经磁选后随之进入非磁性物,实现铁与杂质矿物之间的有效分离。  相似文献   

17.
对于孔隙均匀分布的多孔功能梯度材料梁模型,考虑材料的温度依赖性质并确定梁的物理中面,利用Hamilton原理导出多孔功能梯度材料Timoshenko梁在热环境中转动时横向自由振动的控制微分方程并进行无量纲化处理.应用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,得到包含无量纲固有频率的等价代数特征方程.计算出热环境中多孔功能梯度材料转动Timoshenko梁在固支-固支(C-C)、固支-简支(C-S)、简支-简支(S-S)和固支-自由(C-F)四种边界条件下横向自由振动的固有频率.将其退化所得无量纲固有频率与已有文献的计算结果进行对照,验证了有效性和正确性.分析了边界条件、孔隙率、转速、温度、细长比和梯度指数对转动多孔功能梯度材料Timoshenko梁自振频率的影响.  相似文献   

18.
本文阐述硫化矿浮选混合精矿振动高梯度磁分离的研究,其要点是:a.为消除非磁性矿粒的机械夹杂,采用磁介质振动的振动高梯度磁选法;b.为了消除微细异质矿粒凝聚,矿浆入选前进行脱药和充分分散。  相似文献   

19.
针对攀枝花钒钛磁铁矿进行了金属化还原-选分-电热炉熔分实验,考察了磁场强度、还原温度、还原时间、配碳比、还原煤粒度对金属化还原及磁选分离效果的影响.实验结果表明,当磁场强度50mT、还原温度1350℃、还原时间60min、配碳比10、还原煤粒度为-75μm时,金属化还原后产物及磁选分离磁性物质、非磁性物质的各项指标最佳,进一步进行电热炉熔分可实现铁钒分离.新工艺达到铁钒钛资源高效分离要求,铁钒钛收得率分别为9507%,7160%和8008%.  相似文献   

20.
采用碳热还原-磁选富集镍的工艺处理低品位红土镍矿,以活性炭粉为还原剂,在还原球团内加入添加剂A以促进还原球团中金属晶粒的生长及磁性物质与非磁性物质的磁选分离,使红土镍矿在低于传统的熔炼温度下进行还原反应,可大大降低能量消耗.研究结果表明,最佳反应条件:还原温度为1 320℃,还原时间为1 20 min,还原剂与添加剂的质量分数分别为3%及5%;添加剂可促进金属晶粒的聚集,富集的金属晶粒更易于磁选分离;还原产品镍铁合金中镍的质量分数可达8.31%,矿石中镍的回收率可达95.44%,金属镍得到了富集.本工艺具有流程短、操作简单、能耗低及镍铁合金的经济价值高等优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号