首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
A Vincent  D Heitz  C Petit  C Kretz  I Oberlé  J L Mandel 《Nature》1991,349(6310):624-626
The fragile-X syndrome is the most frequent inherited form of mental retardation, with an incidence of 1 in 1,500 males. It is characterized by the presence of a fragile site at Xq27.3 induced in vitro by folate deprivation or by inhibitors of deoxynucleotide synthesis. Its mode of inheritance is unusual for an X-linked trait, with incomplete penetrance in both males and females. Some phenotypically normal males transmit the mutation to all their daughters who rarely express any symptoms, but penetrance is high in sons and daughters of these carrier women. Genetic and physical mapping of the Xq27-q28 region has confirmed that the disease locus is located at or very near the fragile site. Hypotheses proposed to account for the abnormalities in the inheritance of the disease include sequence rearrangements by meiotic recombination or a mutation that affects reactivation of an inactive X chromosome during differentiation of female germ cells. To detect such rearrangements, or methylation changes that may reflect a locally inactive X chromosome, we used pulsed-field gel analysis of DNA from fragile-X patients with probes close to the fragile-X locus. The probe Do33 (DXS465) detected abnormal patterns in fragile-X patients, but not in normal controls or in non-expressing male transmitters.  相似文献   

2.
X-chromosome inactivation in mammals is a regulatory phenomenon whereby one of the two X chromosomes in female cells is genetically inactivated, resulting in dosage compensation for X-linked genes between males and females. In both man and mouse, X-chromosome inactivation is thought to proceed from a single cis-acting switch region or inactivation centre (XIC/Xic). In the human, XIC has been mapped to band Xq13 (ref. 6) and in the mouse to band XD (ref. 7), and comparative mapping has shown that the XIC regions in the two species are syntenic. The recently described human XIST gene maps to the XIC region and seems to be expressed only from the inactive X chromosome. We report here that the mouse Xist gene maps to the Xic region of the mouse X chromosome and, using an interspecific Mus spretus/Mus musculus domesticus F1 hybrid mouse carrying the T(X;16)16H translocation, show that Xist is exclusively expressed from the inactive X chromosome. Conservation between man and mouse of chromosomal position and unique expression exclusively from the inactive X chromosome lends support to the hypothesis that XIST and its mouse homologue are involved in X-chromosome inactivation.  相似文献   

3.
Over 200 recessive X chromosome-linked diseases, typically affecting only hemizygous males, have been identified. In many of these, prenatal diagnosis is possible by chorion villus sampling (CVS) or amniocentesis, followed by cytogenetic, biochemical or molecular analysis of the cells recovered from the conceptus. In others, the only alternative is to determine the sex of the fetus. If the fetus is affected by the defect or is male, abortion can be offered. Diagnosis of genetic defects in preimplantation embryos would allow those unaffected to be identified and transferred to the uterus. Here we report the first established pregnancies using this procedure, in two couples known to be at risk of transmitting adrenoleukodystrophy and X-linked mental retardation. Two female embryos were transferred after in vitro fertilization (IVF), biopsy of a single cell at the six- to eight-cell stage, and sexing by DNA amplification of a Y chromosome-specific repeat sequence. Both women are confirmed as carrying normal female twins.  相似文献   

4.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder which affects approximately 1 in 3,300 males, making it the most common of the neuromuscular dystrophies. The biochemical basis of the disease is unknown and as yet no effective treatment is available. A small number of females are also affected with the disease, and these have been found to carry X; autosome translocations involving variable autosomal sites but always with a breakpoint within band Xp21 of the X chromosome (implicated by other kinds of genetic evidence as the site of the DMD lesion). In these female patients the normal X chromosome is preferentially inactivated, which it is assumed silences their one normal DMD gene, leading to expression of the disease. In one such affected female the autosomal breakpoint lies in the middle of the short arm of chromosome 21, within a cluster of ribosomal RNA genes. Here we have used rRNA sequences as probes to clone the region spanning the translocation breakpoint. A sequence derived from the X-chromosomal portion of the clone detects a restriction fragment length polymorphism (RFLP) which is closely linked to the DMD gene and uncovers chromosomal deletions in some male DMD patients.  相似文献   

5.
6.
N A Johnson  D E Perez  E L Cabot  H Hollocher  C I Wu 《Nature》1992,358(6389):751-753
Elucidation of the nature of the gene interactions that underly the sterility of interspecific hybrids is important in evolutionary biology. The interactions between the heterospecific X and Y (or Z and W) chromosomes are often used as an explanation for two reasons. First, the fertility of the hybrids of the heterogametic sex is much more often affected than that of the homogametic sex (Haldane's rule) and X-Y interactions are specific to the heterogametic sex. Second, sex chromosomes, especially the X chromosome, are often considered to be of special importance in determining the fertility of hybrids. X-Y interactions have been addressed in studies of males with a heterospecific Y chromosome in a mixed genetic background. A more stringent test of the X-Y interaction model requires each X chromosome sterility factor to be tested separately for its interaction with the Y chromosome in a homogeneous background of the pure species. Here we report such a test of the X-Y interaction model and conclude that X-Y interactions should not be assumed to be the only or even the most common cause of hybrid sterility.  相似文献   

7.
P Hutter  M Ashburner 《Nature》1987,327(6120):331-333
Post-mating mechanisms are central to the establishment of reproductive isolation between different, but closely related, species. Post-mating isolation mechanisms include hybrid breakdown, hybrid sterility and hybrid lethality and may, in some cases, be reinforced by pre-mating mechanisms such as ethological differentiation. In the Drosophila melanogaster species sub-group post-mating reproductive isolation is ensured by both the inviability and the sterility of hybrids. For example when D. melanogaster females are crossed to D. simulans males the hybrid progeny are normally all female; the hybrid males die as third instar larvae. The viable hybrid females are totally sterile. Little is known of the genetic basis for either hybrid sterility or hybrid inviability, although Coyne and others have begun a genetic analysis of the sterility of hybrids within this species sub-group. We have discovered a single gene difference that rescues the otherwise inviable male hybrids from the cross between D. melanogaster females and males of its three closest relatives. The study of this locus may shed light on the genetic control of both speciation and development.  相似文献   

8.
C P Hunter  W B Wood 《Nature》1992,355(6360):551-555
Sex in Caenorhabditis elegans is determined by a regulatory cascade of seven interacting autosomal genes controlled by three X-linked genes in response to the X chromosome-to-autosome (X/A) ratio. XX animals (high X/A) develop as self-fertile hermaphrodites, and XO animals (low X/A) develop as males. The activity of the first gene in the sex-determining cascade, her-1, is required for male sexual development. XO her-1 loss-of-function mutants develop as self-fertile hermaphrodites, whereas XX her-1 gain-of-function mutants develop as masculinized intersexes. By genetic mosaic analysis using a fused free duplication linking her-1 to a cell-autonomous marker gene, we show here that her-1 expression in a sexually dimorphic cell is neither necessary nor sufficient for that cell to adopt a male fate. Our results suggest that her-1 is expressed in many, possibly all, cells and that its gene product can function non-autonomously through cell interactions to determine male sexual development.  相似文献   

9.
作者采用低小牛血清,低叶酸的TC199培养基及高pH值的培养方法,对16例住院慢性肾炎尿毒症患者,24例正常年轻人外周血淋巴细胞染色体脆性部位及染色体畸变进行了研究,结果表明,慢性肾炎尿毒症患者的染色体畸变及脆性部位表达均较对照组高(P<0.01),其中3p^14表达最高。  相似文献   

10.
H J Cooke  W A Brown  G A Rappold 《Nature》1984,311(5983):259-261
During meiosis the human X and Y chromosomes form a synaptonemal complex which covers most of Yp and the terminal 30% of Xp (ref. 1). By analogy with the autosomes, this is presumed to reflect DNA sequence homology. It has been suggested that these regions of the X and Y chromosomes contain either related or identical loci which are distal to a site of cross-over, and support for these ideas has come from the finding that an X-linked cell-surface antigen controlling gene MIC2 is related to a gene on the Y chromosome. A number of DNA sequences have been shown to occur either on the X and Y chromosomes or on the X, Y and autosomes. We have now isolated a sequence from the Y chromosome which is present on Xq and Yq. This region lies well outside the pairing segments, and sequence analysis reveals no base change in 1 kilobase pair (kb). This high degree of similarity between the X and Y chromosomes near the tips of the long arms is a strong indication that interchange can occur in this region.  相似文献   

11.
Variation in regulation of steroid sulphatase locus in mammals   总被引:1,自引:0,他引:1  
M Crocker  I Craig 《Nature》1983,303(5919):721-722
Inactivation (lyonization) of one of the two copies of X-linked genes occurs in female mammals, thereby reducing the number of active copies to that of the male. It has been suggested that genes subject to lyonization would be expected to be preserved as a linkage group during mammalian evolution. A short region of the human X chromosome containing several genes, including that necessary for the expression of steroid sulphatase (STS), is exceptional in that it apparently escapes X-inactivation. As it is not apparent why the linkage of genes not subject to X-inactivation should be conserved, we have examined the expression of the STS gene in mice (it has been shown recently that this gene is X-linked). Enzyme levels were determined in normal males and females and in the progeny of crosses in which the sex reversing factor, Sxr, was segregating to produce XX males. We report here that in contrast to the situation in humans, the STS gene in mice is subject to the normal pattern of X-inactivation.  相似文献   

12.
13.
Bohossian HB  Skaletsky H  Page DC 《Nature》2000,406(6796):622-625
In 1947, it was suggested that, in humans, the mutation rate is dramatically higher in the male germ line than in the female germ line. This hypothesis has been supported by the observation that, among primates, Y-linked genes evolved more rapidly than homologous X-linked genes. Based on these evolutionary studies, the ratio (alpha(m)) of male to female mutation rates in primates was estimated to be about 5. However, selection could have skewed sequence evolution in introns and exons. In addition, some of the X-Y gene pairs studied lie within chromosomal regions with substantially divergent nucleotide sequences. Here we directly compare human X and Y sequences within a large region with no known genes. Here the two chromosomes are 99% identical, and X-Y divergence began only three or four million years ago, during hominid evolution. In apes, homologous sequences exist only on the X chromosome. We sequenced and compared 38.6 kb of this region from human X, human Y, chimpanzee X and gorilla X chromosomes. We calculated alpha(m) to be 1.7 (95% confidence interval 1.15-2.87), significantly lower than previous estimates in primates. We infer that, in humans and their immediate ancestors, male and female mutation rates were far more similar than previously supposed.  相似文献   

14.
15.
The recent discovery of sequences at the site of the Duchenne muscular dystrophy (DMD) gene in humans has opened up the possibility of a detailed molecular analysis of the genes in humans and in related mammalian species. Until relatively recently, there was no obvious mouse model of this genetic disease for the development of therapeutic strategies. The identification of a mouse X-linked mutant showing muscular dystrophy, mdx, has provided a candidate mouse genetic homologue to the DMD locus; the relatively mild pathological features of mdx suggest it may have more in common with mutations of the Becker muscular dystrophy type at the same human locus, however. But the close genetic linkage of mdx to G6PD and Hprt on the mouse X chromosome, coupled with its comparatively mild pathology, have suggested that the mdx mutation may instead correspond to Emery Dreifuss muscular dystrophy which itself is closely linked to DNA markers at Xq28-qter in the region of G6PD on the human X chromosome. Using an interspecific mouse domesticus/spretus cross, segregating for a variety of markers on the mouse X chromosome, we have positioned on the mouse X chromosome sequences homologous to a DMD cDNA clone. These sequences map provocatively close to the mdx mutation and unexpectedly distant from sparse fur, spf, the mouse homologue of OTC (ornithine transcarbamylase) which is closely linked to DMD on the human X chromosome.  相似文献   

16.
17.
The striking number of human and murine immunodeficiency disorders which map to the X chromosome suggests that genes localized on this chromosome must have important roles in lymphocyte development. At least seven distinct disorders in the human and two in the mouse disrupt lymphocyte maturation, particularly that of B cells, at characteristic stages. As functional genes mapping to the X chromosome in one mammal are found on the X chromosome in all other mammals, the same genes regulating lymphocyte development are expected to be found on the X chromosome in mouse and man. Investigations into the possible mechanisms of these X-linked disorders have been hampered by the lack of molecular probes for the genes or gene products affected; because of this, and the possibility of correlating one or more of the several hundred B- or T-cell-specific genes with a specific mutation, we surveyed 15 different B- and T-cell-specific cDNA clones for localization to the X chromosome. We report here the characterization of one of these murine cDNA clones, which hybridizes with a large, X-linked gene family, designated XLR (X-linked, lymphocyte-regulated). We show that the XLR gene family is closely linked to the X-linked immunodeficiency described in the CBA/N mouse strain (xid), by restriction fragment length polymorphism (RFLP) analysis of DNA from mice congeneic for xid. This finding, together with data on the expression of the XLR locus in B cells, indicates that this gene family either includes the locus defined by the xid mutation or is adjacent to it in a gene complex which may be important in lymphocyte differentiation.  相似文献   

18.
Age related reactivation of an X-linked gene   总被引:7,自引:0,他引:7  
We have investigated age-related reactivation of the X chromosome by devising a model in which reactivation of a single gene in one cell among many can be identified. We have used mice with an X-autosomal translocation giving consistent non-random inactivation of the normal X (as judged by biochemical and cytogenetic techniques), that also carry a defective form of a histochemically demonstrable X-linked enzyme. When the gene for the normal enzyme was located on the inactivated normal X a uniformly negative histochemical picture would be predicted in doubly heterozygous animals. A very small proportion of enzyme-positive cells was found in young animals. This proportion increased very significantly with age, but the patch size did not change, showing that the result was not due to preferential division of enzyme-positive cells, but was instead due to the conversion of previously enzyme-negative to enzyme-positive cells. These observations provide the first evidence with a true X-linked gene for an age-related decrease in the stability of the X-inactivation mechanism.  相似文献   

19.
Common fragile sites have long been identified by cytogeneticists as chromosomal regions prone to breakage upon replication stress. They are increasingly recognized to be preferential targets for oncogene-induced DNA damage in pre-neoplastic lesions and hotspots for chromosomal rearrangements in various cancers. Common fragile site instability was attributed to the fact that they contain sequences prone to form secondary structures that may impair replication fork movement, possibly leading to fork collapse resulting in DNA breaks. Here we show, in contrast to this view, that the fragility of FRA3B--the most active common fragile site in human lymphocytes--does not rely on fork slowing or stalling but on a paucity of initiation events. Indeed, in lymphoblastoid cells, but not in fibroblasts, initiation events are excluded from a FRA3B core extending approximately 700 kilobases, which forces forks coming from flanking regions to cover long distances in order to complete replication. We also show that origins of the flanking regions fire in mid-S phase, leaving the site incompletely replicated upon fork slowing. Notably, FRA3B instability is specific to cells showing this particular initiation pattern. The fact that both origin setting and replication timing are highly plastic in mammalian cells explains the tissue specificity of common fragile site instability we observed. Thus, we propose that common fragile sites correspond to the latest initiation-poor regions to complete replication in a given cell type. For historical reasons, common fragile sites have been essentially mapped in lymphocytes. Therefore, common fragile site contribution to chromosomal rearrangements in tumours should be reassessed after mapping fragile sites in the cell type from which each tumour originates.  相似文献   

20.
E Keitges  M Rivest  M Siniscalco  S M Gartler 《Nature》1985,315(6016):226-227
In the human there is an X-linked gene affecting steroid sulphatase (STS) activity which, when deficient, is associated with X-linked congenital ichthyosis. The gene (STS) is located on the distal tip of the short arm and is only partially inactivated when it is on the inactive X-chromosome. In the mouse, the genetics of STS are not clear; the results of one study using XX:X0 oocyte comparisons indicated X-linkage, but three other studies using STS variants have produced segregation data compatible with autosomal linkage of murine STS. Here we present the results of STS assays of crosses of deficient C3H/An male mice to normal X0 animals which demonstrate X-linkage of STS in the mouse and indirectly indicate the existence of a functional STS allele on the Y-chromosome which undergoes obligatory recombination during meiosis with the X-linked allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号