首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
构造G-morphic环   总被引:2,自引:2,他引:0  
若环R中的每个元a都满足R/Ran≌l(an),其中l(an)是an在R中左零化子,则环R叫做左G-morphic环.C是环D的子环,且R[D,C]={(d1,…,dt,c,c,…)|di∈D,c∈C,t≥1};本文主要给出了R[D,C]是左G-morphic环的一个充要条件;还给出了左[D,C]G-morphic元的定义和它的一些性质.  相似文献   

2.
G-morphic环的一些结果   总被引:11,自引:8,他引:3  
我们给出了G-morphic环的定义,证明了如下主要结果:对R中的任意幂等元e,如果R是左G-morphic环,则eRe也是左G-morphic环;每一个幺π-正则环是左(右)G-morphic环;每一个左G-morphic环是右GP-内射环.  相似文献   

3.
广义morphic环     
证明了当R是广义morphic环时,R是左Kasch环当且仅当R的任意极大左理想是一个零化子,也当且仅当R的任意极大左理想是由一个morphic元生成的主左理想.设R是环,R∝R是环R的特殊平凡扩张,α是R中的正则元,则α是R的广义左morphic元,当且仅当(α,0)是R∝R的广义左morphic元,也当且仅当(α,α)是R∝R的广义左morphic元.  相似文献   

4.
G-morphic群环   总被引:3,自引:3,他引:0  
本文讨论了左G-morphic群环RG的性质,主要证明了以下结果:设R是一个环,G是一个局部有限群,如果群环RG是左G-morphic环,那么R是左G-morphic环;如果对G的每个有限子群H,群环RH是左G-morphic环,那么群环RG是左G-morphic环.  相似文献   

5.
本文讨论了G-morphic环与单位π-正则环的关系,并证明了(1)环R是单位π-正则环等价于对R中每个元素a,存在正整数n,使得an=e+u.并且anR∩eR=0,其中e是幂等元且u是环R中单位,(2)在约化的条件下,正则环,强正则环,强π-正则环,单位正则环,单位π-正则环与G-morphic环是等价的.  相似文献   

6.
G-morphic模   总被引:2,自引:2,他引:0  
利用模的自投射及生成核的性质给出了左R模为G-morphic模等价于其自同态环为左G-morphic环的条件,并利用此结论证明了G-morphic模有类似于G-morphic环的性质:在一定条件下G-morphic模的直积因子也为G-morphic模,从而在一定程度上反映了G-morphic模与G-morphic环的联系.  相似文献   

7.
推广了弱对称环的概念,研究了具有弱对称自同态α的环,称为弱对称α-环,讨论弱对称α-环与相关环的关系,研究了弱对称α-环的一些扩张性质。证明了:(1)设α是环R的自同态,则R是α-rigid环当且仅当R是弱对称α-环,且由aRα(a)∈nil(R)可推出a=0,对任何a∈R;(2)设R是半交换环,α是R的自同态,则R是弱对称α-环当且仅当R[x]是弱珔α-sy环。  相似文献   

8.
ML-环     
称环R为左ML-环,若环R中任意元a满足a或1-a是左Morphic元.显然,左Morphic环及局部环皆为左ML-环,但反之不然.设{Ri}i∈I是环族.得到的∏i∈IRi是左ML-环当且仅当存在i0∈I使得Ri0是左ML-环且对任意i∈I-{i0},Ri都是左Morphic环.此外,若正整数n≥2且n=∏si=1prii是n的标准因子分解,则Zn∝Zn是左ML-环当且仅当至多一个i使得ri>1当且仅当Zn是VNL-环.同时还构造了一些例子来说明问题.  相似文献   

9.
研究了两类特殊三阶矩阵环的左Morphic性质.具体地,设R是环,令L(R)=a11 0 0a21 a22 a230 0 a33|a11,a21,a22,a23,a33∈R和O(R)=a 0 0a21 a a230 0a|a,a21,a23∈R.证得:(1)L(R)和O(R)都不是左Morphic的;(2)当R是唯一Morphic环且R∝R是左Morphic的,O(R)中主对角线为非零元的元素是左Morphic元.  相似文献   

10.
本文证明了幺π-正则环与左G-morphic的π-正则环的等价性;以及在约化条件下,G-morphic环与其他一些特殊环的联系;以及在ZI环类中,左(右)GP-V-(GP-V′-)的G-morphic环与强正则环的等价性.  相似文献   

11.
主要研究了AP-内射环成为连续环的条件.在AP-内射环满足C2条件的基础上,结合Baer环、duo环、半完全环、MI环等,探索了何时AP-内射环也满足C1条件,从而成为连续环,得到了一些相关结果:(1)设R是左AP-内射、左duo环,若R又是局部Baer环,则R是左连续环;(2)设R=i∈IRi是左AP-内射环,其中Ri是一致左理想,若R是Baer环且左duo,则R是左连续环;(3)设R是左AP-内射、左duo环,若R又是半完全的Baer环,则R是左连续环;(4)设R是左AP-内射环,RR是弱内射的,则R是左连续环;(5)设R是左AP-内射、左MI环,则R是左连续环.  相似文献   

12.
关于GP-内射环   总被引:1,自引:2,他引:1  
设R,T为环,M是左R-右T-双模,且MTT忠实的,T是右GP-内射的当且仅当对任意t(≠0)∈T,存在非负整数n,使tn≠0,有Mtn=(Mtn)C)S,且Ttn=(Mtn:M)T;T是左GP-内射的当且仅当对任意t(≠0)∈T,存在非负整数使tn≠0.有tnT=rTlM(tn)且lM(tn)=((lM(tn))S).  相似文献   

13.
本文证明 Cayley-Hamilton 定理的一个推广:设 R 是含单位元的交换环,M_n(R)[λ]是 R 的矩阵环 M_n(R)上的多项式环,如果 F(λ)∈M_n(R)(λ),F(A)=0,(?)(λ)=detF(λ),则(?)(A)=0.  相似文献   

14.
G-morphic环的正则性   总被引:2,自引:1,他引:1  
主要证明了:约化的左G-morphic的右WIN-环是π-正则环;约化的右G-morphic的左WIN-环是强π-正则环;π-正则的零因子可换环是G-morphic环;约化的强-π-正出环是G-morphic环.  相似文献   

15.
设R,T是环,M是左R-右-T双模,且M T是忠实的,则:(1)T是右JGP-内射环当且仅当对任意t(≠0)∈J(T),存在正整数n,使tn≠0,且有Mtn=((Mtn)c)s,Ttn=(Mtn:M) T;(2)T是左JGP-内射环当且仅当对任意t(≠0)∈J(T),存在正整数n,使tn≠0,且有l M(tn)=((l M(tn))s)c,tnT=r Tl M(tn).  相似文献   

16.
本文通过引入左α-半交换环推广半交换环的概念。设α是环R的一个非零自同态,称R是一个左α-半交换环,如果对任何a,b∈R,由ab=0可以推出α(a)Rb=0。本文讨论左α-半交换环与相关环的关系,给出左α-半交换环的一些扩张性质,证明了:①环R是α-rigid环当且仅当R是约化的左α-半交换环,且α是单同态;②如果R是约化的左α-半交换环,则R[x]/〈xn〉是左珔α-半交换环,其中〈xn〉是由xn生成的理想,n为任何正整数。  相似文献   

17.
右弱C2环   总被引:2,自引:2,他引:0  
给出右弱C2环的定义,证明了:1)环R是右弱C2环当且仅当对每个0≠a∈R,存在正整数n使得a^n≠0,且若r(a^n)=r(e),其中e^2=e∈R,则e∈Ra^n;2)R是右弱C2环,则Zr(R)包含于J(R);3)给出右弱C2环上Dedekind有限环的等价刻画;4)R是强正则环当且仅当R是右pp环,右弱C2环,Abel环和右零因子幂环。  相似文献   

18.
给出下列交换性定理1)设R为半质环,若对R中任意元x,y,存在整数m=m(y)≥0,n=n(y)≥0,m≥n,fx,y(t)∈t2Z[t]使得fx,y(xmy)-yxn∈Z(R)或fx,y(yxm)-yxn∈Z(R),则R为交换环.2)设R为k the半单纯环,若对R中任意x,y,存在整数m=m(x,y)≥n=n(x,y)≥0,多项式fx,y(t)∈t2Z[t]使得fx,y(xmy)-yxn∈Z(R)或fx,y(yxm)-yxn∈Z(R),则R为交换环.  相似文献   

19.
给出了拟G-morphic模的定义,利用模的自投射及生成核的性质给出了左R模为拟G-morphic模等价于其自同态环为拟G-morphic环的条件,并证明了有关拟G-morphic模的一些结论.  相似文献   

20.
环R称为左WGP-内射环,如果对任意0≠a∈R,存在0≠b∈R使ba≠0且rl(ba)=baR.本文研究了左WGP-内射环的扩张,利用环R上的矩阵环Mn(R)以及平凡扩张环T(R,R),给出了判断环R为左WGP-内射环的充要条件,并给出了判断扩张环R[D,C]为左WGP-内射环的充要条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号