首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
葛愉成 《科学通报》2008,53(17):2001-2010
电子显微镜和扫描隧道显微镜使人们能看到原子尺寸的微观世界图像, 极大地促进了化学、生命、材料、表面等学科的发展. 通过提高时间分辨率, 利用特定能量的飞秒和阿秒X射线脉冲来探测超快速化学反应, 如光合作用、DNA和蛋白质分子的合成和分解过程, 已经成为科学发展的前沿研究领域之一. 经过多年的探索, 作者在有关超短X射线脉冲产生(发光)、超快速测量(时间分辨率达到飞秒量级, 1 fs = 10-15 s, 即1千万亿分之一秒, 和阿秒量级, 1 as = 10-18 s, 即100亿亿分之一秒)等前沿领域取得了一些原创性的研究成果, 发现了原子在强激光场中产生飞秒和阿秒X射线脉冲的发射特性(即激光相位与X射线光子能量之间的关系), 揭示了发射特性的激光脉冲宽度依赖性和载波-包络相位(CEP)依赖性及其180°周期结构, 在理论上计算出了飞秒和阿秒X射线光电效应的量子增强现象及光电子能谱的干涉图像等. 提出了测量和应用CEP的新方法, 建立了应用于超快速测量的光电子能谱相位确定法, 找到了重建脉冲时间结构的光电子能谱微分变换方程、积分变换方程和比例变换方程. 利用这些先进的方法和变换方程, 能极大地提高超快速测量的实验效率和时间精度(理论均方根时间偏差为2 as). 这些研究成果为超快速测量实验研究和分子电影技术的发展奠定了重要的理论和技术基础.  相似文献   

2.
葛愉成  何海萍 《科学通报》2012,(Z1):120-128
为了研究化学反应、原子分子发光等超快速过程中电子态的时间演化过程,需要能量越来越高、脉冲时间宽度越来越短、单色性越来越好的光脉冲作为激发和探测手段.但是,如何快速、精确地测量这些光脉冲具体细致的时间结构,一直是科学界的一个挑战.在过去的十多年时间里,人们在测量超紫外线阿秒脉冲方面作出了巨大的努力,取得了显著的成果.迄今为止,已经发展出了几种测量阿秒脉冲时间宽度和重建脉冲形状的方法,如阿秒光谱相位干涉直接电场重建法(SPIDER)和阿秒频率分辨光学快门法(FROG).然而,这些方法都是从传统的光学测量方法演变而来的,不仅需要当代最先进的实验装置,而且需要十分复杂的分析计算方法和实验数据拟合过程.为了推动阿秒计量学的发展,进一步开展阿秒测量、脉冲时域定位(定时)、实验数据评估、探测器刻度,以及对阿秒脉冲光源进行改进、优化和应用,我们提出一种直接、快速、精确的基于光电子能谱变换方程的解析方法,利用激光辅助超紫外线气体电离技术,精确地观测超紫外线阿秒脉冲.新方法利用参数化的计算公式确定每个测量得到的光电子的相关激光相位,利用解析性的光电子能谱解谱技术,一步重建脉冲的形状和具体的时间结构.新方法不需要大量的光电子能谱的时间分辨测量,也不需要冗长的迭代计算和实验数据拟合过程,能从每个测量得到的光电子能谱重建出超紫外线脉冲的时域特性.用参数化公式从脉冲的能量带宽值计算得到脉冲重建结果的时间不确定性(即时间误差).由于变换方程建立了超紫外线脉冲时间特性、重要的激光参数(峰值强度、电场包络形状、相位、载波-包络相位等)、原子或分子的电离能,以及光电子能谱之间的直接联系,可以用它从各个已知参数值计算出未知的参量.通过观测、分析某些参数和特定谱项的变化规律,可以研究超快速反应动力学过程中随时间变化的相关信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号