首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Parameter instability and model uncertainty are two key problems affecting forecasting outcomes. In this paper, we propose a time-dependent weighted least squares with ridge constraint (TWLS-Ridge) to solve the above two problems in the forecasting procedure. The new TWLS-Ridge approach is applied to the heterogenous autoregressive realized volatility model and its various extensions. The empirical results suggest that TWLS-Ridge produces more accurate volatility forecasts than several alternative models dealing with parameter instability and model uncertainty. The superior performance of TWLS-Ridge is robust under different forecast horizons, evaluation periods, and loss functions. An investor with mean–variance preference can improve utility using TWLS-Ridge forecasts of oil volatility instead of ordinary least squares model forecasts.  相似文献   

2.
    
This paper applies combining forecasts of air travel demand generated from the same model but over different estimation windows. The combination approach used resorts to Pesaran and Pick (Journal of Business Economics and Statistics 2011; 29 : 307–318), but the empirical application is extended in several ways. The forecasts are based on a seasonal Box–Jenkins model (SARIMA), which is adequate to forecast monthly air travel demand with distinct seasonal patterns at the largest German airport: Frankfurt am Main. Furthermore, forecasts with forecast horizons from 1 to 12 months ahead, which are based on different average estimation windows, expanding windows and single rolling windows, are compared with baseline forecasts based on an expanding window of the observations after a structural break. The forecast exercise shows that the average window forecasts mostly outperform the alternative single window forecasts. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
    
This paper investigates the forecasting performance of the Garch (1, 1) model when estimated with NINE different error distributions on Standard and Poor's 500 Index Future returns. By utilizing the theory of realized variance to construct an appropriate ex post measure of volatility from intra‐day data it is shown that allowing for a leptokurtic error distribution leads to significant improvements in variance forecasts compared to using the normal distribution. This result holds for daily, weekly as well as monthly forecast horizons. It is also found that allowing for skewness and time variation in the higher moments of the distribution does not further improve forecasts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
    
In a conditional predictive ability test framework, we investigate whether market factors influence the relative conditional predictive ability of realized measures (RMs) and implied volatility (IV), which is able to examine the asynchronism in their forecasting accuracy, and further analyze their unconditional forecasting performance for volatility forecast. Our results show that the asynchronism can be detected significantly and is strongly related to certain market factors, and the comparison between RMs and IV on average forecast performance is more efficient than previous studies. Finally, we use the factors to extend the empirical similarity (ES) approach for combination of forecasts derived from RMs and IV.  相似文献   

5.
P. C. B. Phillips (1998) demonstrated that deterministic trends are a valid representation of an otherwise stochastic trending mechanism; he remained skeptic, however, about the predictive power of such representations. In this paper we prove that forecasts built upon spurious regression may perform (asymptotically) as well as those issued from a correctly specified regression. We derive the order in probability of several in‐sample and out‐of‐sample predictability criteria ( test, root mean square error, Theil's U‐statistics and R2) using forecasts based upon a least squares‐estimated regression between independent variables generated by a variety of empirically relevant data‐generating processes. It is demonstrated that, when the variables are mean stationary or trend stationary, the order in probability of these criteria is the same whether the regression is spurious or not. Simulation experiments confirm our asymptotic results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
    
In this paper, we introduce the functional coefficient to heterogeneous autoregressive realized volatility (HAR‐RV) models to make the parameters change over time. A nonparametric statistic is developed to perform a specification test. The simulation results show that our test displays reliable size and good power. Using the proposed test, we find a significant time variation property of coefficients to the HAR‐RV models. Time‐varying parameter (TVP) models can significantly outperform their constant‐coefficient counterparts for longer forecasting horizons. The predictive ability of TVP models can be improved by accounting for VIX information. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
    
This paper addresses the issue of freight rate risk measurement via value at risk (VaR) and forecast combination methodologies while focusing on detailed performance evaluation. We contribute to the literature in three ways: First, we reevaluate the performance of popular VaR estimation methods on freight rates amid the adverse economic consequences of the recent financial and sovereign debt crisis. Second, we provide a detailed and extensive backtesting and evaluation methodology. Last, we propose a forecast combination approach for estimating VaR. Our findings suggest that our combination methods produce more accurate estimates for all the sectors under scrutiny, while in some cases they may be viewed as conservative since they tend to overestimate nominal VaR.  相似文献   

8.
    
The ability to improve out-of-sample forecasting performance by combining forecasts is well established in the literature. This paper advances this literature in the area of multivariate volatility forecasts by developing two combination weighting schemes that exploit volatility persistence to emphasise certain losses within the combination estimation period. A comprehensive empirical analysis of the out-of-sample forecast performance across varying dimensions, loss functions, sub-samples and forecast horizons show that new approaches significantly outperform their counterparts in terms of statistical accuracy. Within the financial applications considered, significant benefits from combination forecasts relative to the individual candidate models are observed. Although the more sophisticated combination approaches consistently rank higher relative to the equally weighted approach, their performance is statistically indistinguishable given the relatively low power of these loss functions. Finally, within the applications, further analysis highlights how combination forecasts dramatically reduce the variability in the parameter of interest, namely the portfolio weight or beta.  相似文献   

9.
    
In this paper, we investigate the time series properties of S&P 100 volatility and the forecasting performance of different volatility models. We consider several nonparametric and parametric volatility measures, such as implied, realized and model‐based volatility, and show that these volatility processes exhibit an extremely slow mean‐reverting behavior and possible long memory. For this reason, we explicitly model the near‐unit root behavior of volatility and construct median unbiased forecasts by approximating the finite‐sample forecast distribution using bootstrap methods. Furthermore, we produce prediction intervals for the next‐period implied volatility that provide important information about the uncertainty surrounding the point forecasts. Finally, we apply intercept corrections to forecasts from misspecified models which dramatically improve the accuracy of the volatility forecasts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
    
To forecast realized volatility, this paper introduces a multiplicative error model that incorporates heterogeneous components: weekly and monthly realized volatility measures. While the model captures the long‐memory property, estimation simply proceeds using quasi‐maximum likelihood estimation. This paper investigates its forecasting ability using the realized kernels of 34 different assets provided by the Oxford‐Man Institute's Realized Library. The model outperforms benchmark models such as ARFIMA, HAR, Log‐HAR and HEAVY‐RM in within‐sample fitting and out‐of‐sample (1‐, 10‐ and 22‐step) forecasts. It performed best in both pointwise and cumulative comparisons of multi‐step‐ahead forecasts, regardless of loss function (QLIKE or MSE). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
    
For leverage heterogeneous autoregressive (LHAR) models with jumps and other covariates, called LHARX models, multistep forecasts are derived. Some optimal properties of forecasts in terms of conditional volatilities are discussed, which tells us to model conditional volatility for return but not for the LHARX regression error and other covariates. Forecast standard errors are constructed for which we need to model conditional volatilities both for return and for LHAR regression error and other blue covariates. The proposed methods are well illustrated by forecast analysis for the realized volatilities of the US stock price indexes: the S&P 500, the NASDAQ, the DJIA, and the RUSSELL indexes.  相似文献   

12.
    
Volatility plays a key role in asset and portfolio management and derivatives pricing. As such, accurate measures and good forecasts of volatility are crucial for the implementation and evaluation of asset and derivative pricing models in addition to trading and hedging strategies. However, whilst GARCH models are able to capture the observed clustering effect in asset price volatility in‐sample, they appear to provide relatively poor out‐of‐sample forecasts. Recent research has suggested that this relative failure of GARCH models arises not from a failure of the model but a failure to specify correctly the ‘true volatility’ measure against which forecasting performance is measured. It is argued that the standard approach of using ex post daily squared returns as the measure of ‘true volatility’ includes a large noisy component. An alternative measure for ‘true volatility’ has therefore been suggested, based upon the cumulative squared returns from intra‐day data. This paper implements that technique and reports that, in a dataset of 17 daily exchange rate series, the GARCH model outperforms smoothing and moving average techniques which have been previously identified as providing superior volatility forecasts. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
    
Recent studies suggest realized volatility provides forecasts that are as good as option‐implied volatilities, with improvement stemming from the use of high‐frequency data instead of a long‐memory specification. This paper examines whether volatility persistence can be captured by a longer dataset consisting of over 15 years of intra‐day data. Volatility forecasts are evaluated using four exchange rates (AUD/USD, EUR/USD, GBP/USD, USD/JPY) over horizons ranging from 1 day to 3 months, using an expanded set of short‐range and long‐range dependence models. The empirical results provide additional evidence that significant incremental information is found in historical forecasts, beyond the implied volatility information for all forecast horizons. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
    
We study intraday return volatility dynamics using a time‐varying components approach, and the method is applied to analyze IBM intraday returns. Empirical evidence indicates that with three additive components—a time‐varying mean of absolute returns and two cosine components with time‐varying amplitudes—together they capture very well the pronounced periodicity and persistence behaviors exhibited in the empirical autocorrelation pattern of IBM returns. We find that the long‐run volatility persistence is driven predominantly by daily level shifts in mean absolute returns. After adjusting for these intradaily components, the filtered returns behave much like a Gaussian noise, suggesting that the three‐components structure is adequately specified. Furthermore, a new volatility measure (TCV) can be constructed from these components. Results from extensive out‐of‐sample rolling forecast experiments suggest that TCV fares well in predicting future volatility against alternative methods, including GARCH model, realized volatility and realized absolute value. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
    
In this paper we compare several multi‐period volatility forecasting models, specifically from MIDAS and HAR families. We perform our comparisons in terms of out‐of‐sample volatility forecasting accuracy. We also consider combinations of the models' forecasts. Using intra‐daily returns of the BOVESPA index, we calculate volatility measures such as realized variance, realized power variation and realized bipower variation to be used as regressors in both models. Further, we use a nonparametric procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the quadratic variation process. Thus MIDAS and HAR specifications with the continuous sample path and jump variability measures as separate regressors are estimated. Our results in terms of mean squared error suggest that regressors involving volatility measures which are robust to jumps (i.e. realized bipower variation and realized power variation) are better at forecasting future volatility. However, we find that, in general, the forecasts based on these regressors are not statistically different from those based on realized variance (the benchmark regressor). Moreover, we find that, in general, the relative forecasting performances of the three approaches (i.e. MIDAS, HAR and forecast combinations) are statistically equivalent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
    
In multivariate volatility prediction, identifying the optimal forecasting model is not always a feasible task. This is mainly due to the curse of dimensionality typically affecting multivariate volatility models. In practice only a subset of the potentially available models can be effectively estimated, after imposing severe constraints on the dynamic structure of the volatility process. It follows that in most applications the working forecasting model can be severely misspecified. This situation leaves scope for the application of forecast combination strategies as a tool for improving the predictive accuracy. The aim of the paper is to propose some alternative combination strategies and compare their performances in forecasting high‐dimensional multivariate conditional covariance matrices for a portfolio of US stock returns. In particular, we will consider the combination of volatility predictions generated by multivariate GARCH models, based on daily returns, and dynamic models for realized covariance matrices, built from intra‐daily returns. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
    
This paper uses high‐frequency continuous intraday electricity price data from the EPEX market to estimate and forecast realized volatility. Three different jump tests are used to break down the variation into jump and continuous components using quadratic variation theory. Several heterogeneous autoregressive models are then estimated for the logarithmic and standard deviation transformations. Generalized autoregressive conditional heteroskedasticity (GARCH) structures are included in the error terms of the models when evidence of conditional heteroskedasticity is found. Model selection is based on various out‐of‐sample criteria. Results show that decomposition of realized volatility is important for forecasting and that the decision whether to include GARCH‐type innovations might depend on the transformation selected. Finally, results are sensitive to the jump test used in the case of the standard deviation transformation.  相似文献   

18.
Volatility forecasting remains an active area of research with no current consensus as to the model that provides the most accurate forecasts, though Hansen and Lunde (2005) have argued that in the context of daily exchange rate returns nothing can beat a GARCH(1,1) model. This paper extends that line of research by utilizing intra‐day data and obtaining daily volatility forecasts from a range of models based upon the higher‐frequency data. The volatility forecasts are appraised using four different measures of ‘true’ volatility and further evaluated using regression tests of predictive power, forecast encompassing and forecast combination. Our results show that the daily GARCH(1,1) model is largely inferior to all other models, whereas the intra‐day unadjusted‐data GARCH(1,1) model generally provides superior forecasts compared to all other models. Hence, while it appears that a daily GARCH(1,1) model can be beaten in obtaining accurate daily volatility forecasts, an intra‐day GARCH(1,1) model cannot be. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
    
Empirical experiments have shown that macroeconomic variables can affect the volatility of stock market. However, the frequencies of macroeconomic variables are low and different from the stock market volatility, and few literature considers the low-frequency macroeconomic variables as input indicators for deep learning models. In this paper, we forecast the stock market volatility incorporating low-frequency macroeconomic variables based on a hybrid model integrating the deep learning method with generalized autoregressive conditional heteroskedasticity and mixed data sampling (GARCH-MIDAS) model to process the mixing frequency data. This paper firstly takes macroeconomic variables as exogenous variables then uses the GARCH-MIDAS model to deal with the problem of different frequencies between the macroeconomic variables and stock market volatility and to forecast the short-term volatility and finally takes the predicted short-term volatility as the input indicator into machine learning and deep learning models to forecast the realized volatility of stock market. It is found that adding macroeconomic variables can significantly improve the forecasting ability in the comparison of the forecasting effects of the same model before and after adding the macroeconomic variables. Additionally, in the comparison of the forecasting effects among different models, it is also found that the forecasting effect of the deep learning model is the best, the machine learning model is worse, and the traditional econometric model is the worst.  相似文献   

20.
    
This paper considers how information from the implied volatility (IV) term structure can be harnessed to improve stock return volatility forecasting within the state-of-the-art HAR model. Factors are extracted from the IV term structure and included as exogenous variables in the HAR framework. We found that including slope and curvature factors leads to significant forecast improvements over the HAR benchmark at a range of forecast horizons, compared with the standard HAR model and HAR model with VIX as IV information set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号